Source code for can.bit_timing

# pylint: disable=too-many-lines
import math
from typing import TYPE_CHECKING, Iterator, List, Mapping, cast

if TYPE_CHECKING:
    from can.typechecking import BitTimingDict, BitTimingFdDict


[docs] class BitTiming(Mapping): """Representation of a bit timing configuration for a CAN 2.0 bus. The class can be constructed in multiple ways, depending on the information available. The preferred way is using CAN clock frequency, prescaler, tseg1, tseg2 and sjw:: can.BitTiming(f_clock=8_000_000, brp=1, tseg1=5, tseg2=1, sjw=1) Alternatively you can set the bitrate instead of the bit rate prescaler:: can.BitTiming.from_bitrate_and_segments( f_clock=8_000_000, bitrate=1_000_000, tseg1=5, tseg2=1, sjw=1 ) It is also possible to specify BTR registers:: can.BitTiming.from_registers(f_clock=8_000_000, btr0=0x00, btr1=0x14) or to calculate the timings for a given sample point:: can.BitTiming.from_sample_point(f_clock=8_000_000, bitrate=1_000_000, sample_point=75.0) """ def __init__( self, f_clock: int, brp: int, tseg1: int, tseg2: int, sjw: int, nof_samples: int = 1, strict: bool = False, ) -> None: """ :param int f_clock: The CAN system clock frequency in Hz. :param int brp: Bit rate prescaler. :param int tseg1: Time segment 1, that is, the number of quanta from (but not including) the Sync Segment to the sampling point. :param int tseg2: Time segment 2, that is, the number of quanta from the sampling point to the end of the bit. :param int sjw: The Synchronization Jump Width. Decides the maximum number of time quanta that the controller can resynchronize every bit. :param int nof_samples: Either 1 or 3. Some CAN controllers can also sample each bit three times. In this case, the bit will be sampled three quanta in a row, with the last sample being taken in the edge between TSEG1 and TSEG2. Three samples should only be used for relatively slow baudrates. :param bool strict: If True, restrict bit timings to the minimum required range as defined in ISO 11898. This can be used to ensure compatibility across a wide variety of CAN hardware. :raises ValueError: if the arguments are invalid. """ self._data: BitTimingDict = { "f_clock": f_clock, "brp": brp, "tseg1": tseg1, "tseg2": tseg2, "sjw": sjw, "nof_samples": nof_samples, } self._validate() if strict: self._restrict_to_minimum_range() def _validate(self) -> None: if not 1 <= self.brp <= 64: raise ValueError(f"bitrate prescaler (={self.brp}) must be in [1...64].") if not 1 <= self.tseg1 <= 16: raise ValueError(f"tseg1 (={self.tseg1}) must be in [1...16].") if not 1 <= self.tseg2 <= 8: raise ValueError(f"tseg2 (={self.tseg2}) must be in [1...8].") if not 1 <= self.sjw <= 4: raise ValueError(f"sjw (={self.sjw}) must be in [1...4].") if self.sjw > self.tseg2: raise ValueError( f"sjw (={self.sjw}) must not be greater than tseg2 (={self.tseg2})." ) if self.sample_point < 50.0: raise ValueError( f"The sample point must be greater than or equal to 50% " f"(sample_point={self.sample_point:.2f}%)." ) if self.nof_samples not in (1, 3): raise ValueError("nof_samples must be 1 or 3") def _restrict_to_minimum_range(self) -> None: if not 8 <= self.nbt <= 25: raise ValueError(f"nominal bit time (={self.nbt}) must be in [8...25].") if not 1 <= self.brp <= 32: raise ValueError(f"bitrate prescaler (={self.brp}) must be in [1...32].") if not 5_000 <= self.bitrate <= 1_000_000: raise ValueError( f"bitrate (={self.bitrate}) must be in [5,000...1,000,000]." )
[docs] @classmethod def from_bitrate_and_segments( cls, f_clock: int, bitrate: int, tseg1: int, tseg2: int, sjw: int, nof_samples: int = 1, strict: bool = False, ) -> "BitTiming": """Create a :class:`~can.BitTiming` instance from bitrate and segment lengths. :param int f_clock: The CAN system clock frequency in Hz. :param int bitrate: Bitrate in bit/s. :param int tseg1: Time segment 1, that is, the number of quanta from (but not including) the Sync Segment to the sampling point. :param int tseg2: Time segment 2, that is, the number of quanta from the sampling point to the end of the bit. :param int sjw: The Synchronization Jump Width. Decides the maximum number of time quanta that the controller can resynchronize every bit. :param int nof_samples: Either 1 or 3. Some CAN controllers can also sample each bit three times. In this case, the bit will be sampled three quanta in a row, with the last sample being taken in the edge between TSEG1 and TSEG2. Three samples should only be used for relatively slow baudrates. :param bool strict: If True, restrict bit timings to the minimum required range as defined in ISO 11898. This can be used to ensure compatibility across a wide variety of CAN hardware. :raises ValueError: if the arguments are invalid. """ try: brp = int(round(f_clock / (bitrate * (1 + tseg1 + tseg2)))) except ZeroDivisionError: raise ValueError("Invalid inputs") from None bt = cls( f_clock=f_clock, brp=brp, tseg1=tseg1, tseg2=tseg2, sjw=sjw, nof_samples=nof_samples, strict=strict, ) if abs(bt.bitrate - bitrate) > bitrate / 256: raise ValueError( f"the effective bitrate (={bt.bitrate}) diverges " f"from the requested bitrate (={bitrate})" ) return bt
[docs] @classmethod def from_registers( cls, f_clock: int, btr0: int, btr1: int, ) -> "BitTiming": """Create a :class:`~can.BitTiming` instance from registers btr0 and btr1. :param int f_clock: The CAN system clock frequency in Hz. :param int btr0: The BTR0 register value used by many CAN controllers. :param int btr1: The BTR1 register value used by many CAN controllers. :raises ValueError: if the arguments are invalid. """ if not 0 <= btr0 < 2**16: raise ValueError(f"Invalid btr0 value. ({btr0})") if not 0 <= btr1 < 2**16: raise ValueError(f"Invalid btr1 value. ({btr1})") brp = (btr0 & 0x3F) + 1 sjw = (btr0 >> 6) + 1 tseg1 = (btr1 & 0xF) + 1 tseg2 = ((btr1 >> 4) & 0x7) + 1 nof_samples = 3 if btr1 & 0x80 else 1 return cls( brp=brp, f_clock=f_clock, tseg1=tseg1, tseg2=tseg2, sjw=sjw, nof_samples=nof_samples, )
[docs] @classmethod def iterate_from_sample_point( cls, f_clock: int, bitrate: int, sample_point: float = 69.0 ) -> Iterator["BitTiming"]: """Create a :class:`~can.BitTiming` iterator with all the solutions for a sample point. :param int f_clock: The CAN system clock frequency in Hz. :param int bitrate: Bitrate in bit/s. :param int sample_point: The sample point value in percent. :raises ValueError: if the arguments are invalid. """ if sample_point < 50.0: raise ValueError(f"sample_point (={sample_point}) must not be below 50%.") for brp in range(1, 65): nbt = round(int(f_clock / (bitrate * brp))) if nbt < 8: break effective_bitrate = f_clock / (nbt * brp) if abs(effective_bitrate - bitrate) > bitrate / 256: continue tseg1 = int(round(sample_point / 100 * nbt)) - 1 # limit tseg1, so tseg2 is at least 1 TQ tseg1 = min(tseg1, nbt - 2) tseg2 = nbt - tseg1 - 1 sjw = min(tseg2, 4) try: bt = BitTiming( f_clock=f_clock, brp=brp, tseg1=tseg1, tseg2=tseg2, sjw=sjw, strict=True, ) yield bt except ValueError: continue
[docs] @classmethod def from_sample_point( cls, f_clock: int, bitrate: int, sample_point: float = 69.0 ) -> "BitTiming": """Create a :class:`~can.BitTiming` instance for a sample point. This function tries to find bit timings, which are close to the requested sample point. It does not take physical bus properties into account, so the calculated bus timings might not work properly for you. The :func:`oscillator_tolerance` function might be helpful to evaluate the bus timings. :param int f_clock: The CAN system clock frequency in Hz. :param int bitrate: Bitrate in bit/s. :param int sample_point: The sample point value in percent. :raises ValueError: if the arguments are invalid. """ if sample_point < 50.0: raise ValueError(f"sample_point (={sample_point}) must not be below 50%.") possible_solutions: List[BitTiming] = list( cls.iterate_from_sample_point(f_clock, bitrate, sample_point) ) if not possible_solutions: raise ValueError("No suitable bit timings found.") # sort solutions for key, reverse in ( # prefer low prescaler (lambda x: x.brp, False), # prefer low sample point deviation from requested values (lambda x: abs(x.sample_point - sample_point), False), ): possible_solutions.sort(key=key, reverse=reverse) return possible_solutions[0]
@property def f_clock(self) -> int: """The CAN system clock frequency in Hz.""" return self._data["f_clock"] @property def bitrate(self) -> int: """Bitrate in bits/s.""" return int(round(self.f_clock / (self.nbt * self.brp))) @property def brp(self) -> int: """Bit Rate Prescaler.""" return self._data["brp"] @property def tq(self) -> int: """Time quantum in nanoseconds""" return int(round(self.brp / self.f_clock * 1e9)) @property def nbt(self) -> int: """Nominal Bit Time.""" return 1 + self.tseg1 + self.tseg2 @property def tseg1(self) -> int: """Time segment 1. The number of quanta from (but not including) the Sync Segment to the sampling point. """ return self._data["tseg1"] @property def tseg2(self) -> int: """Time segment 2. The number of quanta from the sampling point to the end of the bit. """ return self._data["tseg2"] @property def sjw(self) -> int: """Synchronization Jump Width.""" return self._data["sjw"] @property def nof_samples(self) -> int: """Number of samples (1 or 3).""" return self._data["nof_samples"] @property def sample_point(self) -> float: """Sample point in percent.""" return 100.0 * (1 + self.tseg1) / (1 + self.tseg1 + self.tseg2) @property def btr0(self) -> int: """Bit timing register 0 for SJA1000.""" return (self.sjw - 1) << 6 | self.brp - 1 @property def btr1(self) -> int: """Bit timing register 1 for SJA1000.""" sam = 1 if self.nof_samples == 3 else 0 return sam << 7 | (self.tseg2 - 1) << 4 | self.tseg1 - 1
[docs] def oscillator_tolerance( self, node_loop_delay_ns: float = 250.0, bus_length_m: float = 10.0, ) -> float: """Oscillator tolerance in percent according to ISO 11898-1. :param float node_loop_delay_ns: Transceiver loop delay in nanoseconds. :param float bus_length_m: Bus length in meters. """ delay_per_meter = 5 bidirectional_propagation_delay_ns = 2 * ( node_loop_delay_ns + delay_per_meter * bus_length_m ) prop_seg = math.ceil(bidirectional_propagation_delay_ns / self.tq) nom_phase_seg1 = self.tseg1 - prop_seg nom_phase_seg2 = self.tseg2 df_clock_list = [ _oscillator_tolerance_condition_1(nom_sjw=self.sjw, nbt=self.nbt), _oscillator_tolerance_condition_2( nbt=self.nbt, nom_phase_seg1=nom_phase_seg1, nom_phase_seg2=nom_phase_seg2, ), ] return max(0.0, min(df_clock_list) * 100)
[docs] def recreate_with_f_clock(self, f_clock: int) -> "BitTiming": """Return a new :class:`~can.BitTiming` instance with the given *f_clock* but the same bit rate and sample point. :param int f_clock: The CAN system clock frequency in Hz. :raises ValueError: if no suitable bit timings were found. """ # try the most simple solution first: another bitrate prescaler try: return BitTiming.from_bitrate_and_segments( f_clock=f_clock, bitrate=self.bitrate, tseg1=self.tseg1, tseg2=self.tseg2, sjw=self.sjw, nof_samples=self.nof_samples, strict=True, ) except ValueError: pass # create a new timing instance with the same sample point bt = BitTiming.from_sample_point( f_clock=f_clock, bitrate=self.bitrate, sample_point=self.sample_point ) if abs(bt.sample_point - self.sample_point) > 1.0: raise ValueError( "f_clock change failed because of sample point discrepancy." ) # adapt synchronization jump width, so it has the same size relative to bit time as self sjw = int(round(self.sjw / self.nbt * bt.nbt)) sjw = max(1, min(4, bt.tseg2, sjw)) bt._data["sjw"] = sjw # pylint: disable=protected-access bt._data["nof_samples"] = self.nof_samples # pylint: disable=protected-access bt._validate() # pylint: disable=protected-access return bt
def __str__(self) -> str: segments = [ f"BR: {self.bitrate:_} bit/s", f"SP: {self.sample_point:.2f}%", f"BRP: {self.brp}", f"TSEG1: {self.tseg1}", f"TSEG2: {self.tseg2}", f"SJW: {self.sjw}", f"BTR: {self.btr0:02X}{self.btr1:02X}h", f"CLK: {self.f_clock / 1e6:.0f}MHz", ] return ", ".join(segments) def __repr__(self) -> str: args = ", ".join(f"{key}={value}" for key, value in self.items()) return f"can.{self.__class__.__name__}({args})" def __getitem__(self, key: str) -> int: return cast(int, self._data.__getitem__(key)) def __len__(self) -> int: return self._data.__len__() def __iter__(self) -> Iterator[str]: return self._data.__iter__() def __eq__(self, other: object) -> bool: if not isinstance(other, BitTiming): return False return self._data == other._data def __hash__(self) -> int: return tuple(self._data.values()).__hash__()
[docs] class BitTimingFd(Mapping): """Representation of a bit timing configuration for a CAN FD bus. The class can be constructed in multiple ways, depending on the information available. The preferred way is using CAN clock frequency, bit rate prescaler, tseg1, tseg2 and sjw for both the arbitration (nominal) and data phase:: can.BitTimingFd( f_clock=80_000_000, nom_brp=1, nom_tseg1=59, nom_tseg2=20, nom_sjw=10, data_brp=1, data_tseg1=6, data_tseg2=3, data_sjw=2, ) Alternatively you can set the bit rates instead of the bit rate prescalers:: can.BitTimingFd.from_bitrate_and_segments( f_clock=80_000_000, nom_bitrate=1_000_000, nom_tseg1=59, nom_tseg2=20, nom_sjw=10, data_bitrate=8_000_000, data_tseg1=6, data_tseg2=3, data_sjw=2, ) It is also possible to calculate the timings for a given pair of arbitration and data sample points:: can.BitTimingFd.from_sample_point( f_clock=80_000_000, nom_bitrate=1_000_000, nom_sample_point=75.0, data_bitrate=8_000_000, data_sample_point=70.0, ) """ def __init__( # pylint: disable=too-many-arguments self, f_clock: int, nom_brp: int, nom_tseg1: int, nom_tseg2: int, nom_sjw: int, data_brp: int, data_tseg1: int, data_tseg2: int, data_sjw: int, strict: bool = False, ) -> None: """ Initialize a BitTimingFd instance with the specified parameters. :param int f_clock: The CAN system clock frequency in Hz. :param int nom_brp: Nominal (arbitration) phase bitrate prescaler. :param int nom_tseg1: Nominal phase Time segment 1, that is, the number of quanta from (but not including) the Sync Segment to the sampling point. :param int nom_tseg2: Nominal phase Time segment 2, that is, the number of quanta from the sampling point to the end of the bit. :param int nom_sjw: The Synchronization Jump Width for the nominal phase. This value determines the maximum number of time quanta that the controller can resynchronize every bit. :param int data_brp: Data phase bitrate prescaler. :param int data_tseg1: Data phase Time segment 1, that is, the number of quanta from (but not including) the Sync Segment to the sampling point. :param int data_tseg2: Data phase Time segment 2, that is, the number of quanta from the sampling point to the end of the bit. :param int data_sjw: The Synchronization Jump Width for the data phase. This value determines the maximum number of time quanta that the controller can resynchronize every bit. :param bool strict: If True, restrict bit timings to the minimum required range as defined in ISO 11898. This can be used to ensure compatibility across a wide variety of CAN hardware. :raises ValueError: if the arguments are invalid. """ self._data: BitTimingFdDict = { "f_clock": f_clock, "nom_brp": nom_brp, "nom_tseg1": nom_tseg1, "nom_tseg2": nom_tseg2, "nom_sjw": nom_sjw, "data_brp": data_brp, "data_tseg1": data_tseg1, "data_tseg2": data_tseg2, "data_sjw": data_sjw, } self._validate() if strict: self._restrict_to_minimum_range() def _validate(self) -> None: for param, value in self._data.items(): if value < 0: # type: ignore[operator] err_msg = f"'{param}' (={value}) must not be negative." raise ValueError(err_msg) if self.nom_brp < 1: raise ValueError( f"nominal bitrate prescaler (={self.nom_brp}) must be at least 1." ) if self.data_brp < 1: raise ValueError( f"data bitrate prescaler (={self.data_brp}) must be at least 1." ) if self.data_bitrate < self.nom_bitrate: raise ValueError( f"data_bitrate (={self.data_bitrate}) must be greater than or " f"equal to nom_bitrate (={self.nom_bitrate})" ) if self.nom_sjw > self.nom_tseg2: raise ValueError( f"nom_sjw (={self.nom_sjw}) must not be " f"greater than nom_tseg2 (={self.nom_tseg2})." ) if self.data_sjw > self.data_tseg2: raise ValueError( f"data_sjw (={self.data_sjw}) must not be " f"greater than data_tseg2 (={self.data_tseg2})." ) if self.nom_sample_point < 50.0: raise ValueError( f"The arbitration sample point must be greater than or equal to 50% " f"(nom_sample_point={self.nom_sample_point:.2f}%)." ) if self.data_sample_point < 50.0: raise ValueError( f"The data sample point must be greater than or equal to 50% " f"(data_sample_point={self.data_sample_point:.2f}%)." ) def _restrict_to_minimum_range(self) -> None: # restrict to minimum required range as defined in ISO 11898 if not 8 <= self.nbt <= 80: raise ValueError(f"Nominal bit time (={self.nbt}) must be in [8...80]") if not 5 <= self.dbt <= 25: raise ValueError(f"Nominal bit time (={self.dbt}) must be in [5...25]") if not 1 <= self.data_tseg1 <= 16: raise ValueError(f"data_tseg1 (={self.data_tseg1}) must be in [1...16].") if not 2 <= self.data_tseg2 <= 8: raise ValueError(f"data_tseg2 (={self.data_tseg2}) must be in [2...8].") if not 1 <= self.data_sjw <= 8: raise ValueError(f"data_sjw (={self.data_sjw}) must be in [1...8].") if self.nom_brp == self.data_brp: # shared prescaler if not 2 <= self.nom_tseg1 <= 128: raise ValueError(f"nom_tseg1 (={self.nom_tseg1}) must be in [2...128].") if not 2 <= self.nom_tseg2 <= 32: raise ValueError(f"nom_tseg2 (={self.nom_tseg2}) must be in [2...32].") if not 1 <= self.nom_sjw <= 32: raise ValueError(f"nom_sjw (={self.nom_sjw}) must be in [1...32].") else: # separate prescaler if not 2 <= self.nom_tseg1 <= 64: raise ValueError(f"nom_tseg1 (={self.nom_tseg1}) must be in [2...64].") if not 2 <= self.nom_tseg2 <= 16: raise ValueError(f"nom_tseg2 (={self.nom_tseg2}) must be in [2...16].") if not 1 <= self.nom_sjw <= 16: raise ValueError(f"nom_sjw (={self.nom_sjw}) must be in [1...16].")
[docs] @classmethod def from_bitrate_and_segments( # pylint: disable=too-many-arguments cls, f_clock: int, nom_bitrate: int, nom_tseg1: int, nom_tseg2: int, nom_sjw: int, data_bitrate: int, data_tseg1: int, data_tseg2: int, data_sjw: int, strict: bool = False, ) -> "BitTimingFd": """ Create a :class:`~can.BitTimingFd` instance with the bitrates and segments lengths. :param int f_clock: The CAN system clock frequency in Hz. :param int nom_bitrate: Nominal (arbitration) phase bitrate in bit/s. :param int nom_tseg1: Nominal phase Time segment 1, that is, the number of quanta from (but not including) the Sync Segment to the sampling point. :param int nom_tseg2: Nominal phase Time segment 2, that is, the number of quanta from the sampling point to the end of the bit. :param int nom_sjw: The Synchronization Jump Width for the nominal phase. This value determines the maximum number of time quanta that the controller can resynchronize every bit. :param int data_bitrate: Data phase bitrate in bit/s. :param int data_tseg1: Data phase Time segment 1, that is, the number of quanta from (but not including) the Sync Segment to the sampling point. :param int data_tseg2: Data phase Time segment 2, that is, the number of quanta from the sampling point to the end of the bit. :param int data_sjw: The Synchronization Jump Width for the data phase. This value determines the maximum number of time quanta that the controller can resynchronize every bit. :param bool strict: If True, restrict bit timings to the minimum required range as defined in ISO 11898. This can be used to ensure compatibility across a wide variety of CAN hardware. :raises ValueError: if the arguments are invalid. """ try: nom_brp = int(round(f_clock / (nom_bitrate * (1 + nom_tseg1 + nom_tseg2)))) data_brp = int( round(f_clock / (data_bitrate * (1 + data_tseg1 + data_tseg2))) ) except ZeroDivisionError: raise ValueError("Invalid inputs.") from None bt = cls( f_clock=f_clock, nom_brp=nom_brp, nom_tseg1=nom_tseg1, nom_tseg2=nom_tseg2, nom_sjw=nom_sjw, data_brp=data_brp, data_tseg1=data_tseg1, data_tseg2=data_tseg2, data_sjw=data_sjw, strict=strict, ) if abs(bt.nom_bitrate - nom_bitrate) > nom_bitrate / 256: raise ValueError( f"the effective nom. bitrate (={bt.nom_bitrate}) diverges " f"from the requested nom. bitrate (={nom_bitrate})" ) if abs(bt.data_bitrate - data_bitrate) > data_bitrate / 256: raise ValueError( f"the effective data bitrate (={bt.data_bitrate}) diverges " f"from the requested data bitrate (={data_bitrate})" ) return bt
[docs] @classmethod def iterate_from_sample_point( cls, f_clock: int, nom_bitrate: int, nom_sample_point: float, data_bitrate: int, data_sample_point: float, ) -> Iterator["BitTimingFd"]: """Create an :class:`~can.BitTimingFd` iterator with all the solutions for a sample point. :param int f_clock: The CAN system clock frequency in Hz. :param int nom_bitrate: Nominal bitrate in bit/s. :param int nom_sample_point: The sample point value of the arbitration phase in percent. :param int data_bitrate: Data bitrate in bit/s. :param int data_sample_point: The sample point value of the data phase in percent. :raises ValueError: if the arguments are invalid. """ if nom_sample_point < 50.0: raise ValueError( f"nom_sample_point (={nom_sample_point}) must not be below 50%." ) if data_sample_point < 50.0: raise ValueError( f"data_sample_point (={data_sample_point}) must not be below 50%." ) sync_seg = 1 for nom_brp in range(1, 257): nbt = round(int(f_clock / (nom_bitrate * nom_brp))) if nbt < 1: break effective_nom_bitrate = f_clock / (nbt * nom_brp) if abs(effective_nom_bitrate - nom_bitrate) > nom_bitrate / 256: continue nom_tseg1 = int(round(nom_sample_point / 100 * nbt)) - 1 # limit tseg1, so tseg2 is at least 2 TQ nom_tseg1 = min(nom_tseg1, nbt - sync_seg - 2) nom_tseg2 = nbt - nom_tseg1 - 1 nom_sjw = min(nom_tseg2, 128) for data_brp in range(1, 257): dbt = round(int(f_clock / (data_bitrate * data_brp))) if dbt < 1: break effective_data_bitrate = f_clock / (dbt * data_brp) if abs(effective_data_bitrate - data_bitrate) > data_bitrate / 256: continue data_tseg1 = int(round(data_sample_point / 100 * dbt)) - 1 # limit tseg1, so tseg2 is at least 2 TQ data_tseg1 = min(data_tseg1, dbt - sync_seg - 2) data_tseg2 = dbt - data_tseg1 - 1 data_sjw = min(data_tseg2, 16) try: bt = BitTimingFd( f_clock=f_clock, nom_brp=nom_brp, nom_tseg1=nom_tseg1, nom_tseg2=nom_tseg2, nom_sjw=nom_sjw, data_brp=data_brp, data_tseg1=data_tseg1, data_tseg2=data_tseg2, data_sjw=data_sjw, strict=True, ) yield bt except ValueError: continue
[docs] @classmethod def from_sample_point( cls, f_clock: int, nom_bitrate: int, nom_sample_point: float, data_bitrate: int, data_sample_point: float, ) -> "BitTimingFd": """Create a :class:`~can.BitTimingFd` instance for a sample point. This function tries to find bit timings, which are close to the requested sample points. It does not take physical bus properties into account, so the calculated bus timings might not work properly for you. The :func:`oscillator_tolerance` function might be helpful to evaluate the bus timings. :param int f_clock: The CAN system clock frequency in Hz. :param int nom_bitrate: Nominal bitrate in bit/s. :param int nom_sample_point: The sample point value of the arbitration phase in percent. :param int data_bitrate: Data bitrate in bit/s. :param int data_sample_point: The sample point value of the data phase in percent. :raises ValueError: if the arguments are invalid. """ if nom_sample_point < 50.0: raise ValueError( f"nom_sample_point (={nom_sample_point}) must not be below 50%." ) if data_sample_point < 50.0: raise ValueError( f"data_sample_point (={data_sample_point}) must not be below 50%." ) possible_solutions: List[BitTimingFd] = list( cls.iterate_from_sample_point( f_clock, nom_bitrate, nom_sample_point, data_bitrate, data_sample_point, ) ) if not possible_solutions: raise ValueError("No suitable bit timings found.") # prefer using the same prescaler for arbitration and data phase same_prescaler = list( filter(lambda x: x.nom_brp == x.data_brp, possible_solutions) ) if same_prescaler: possible_solutions = same_prescaler # sort solutions for key, reverse in ( # prefer low prescaler (lambda x: x.nom_brp + x.data_brp, False), # prefer same prescaler for arbitration and data (lambda x: abs(x.nom_brp - x.data_brp), False), # prefer low sample point deviation from requested values ( lambda x: ( abs(x.nom_sample_point - nom_sample_point) + abs(x.data_sample_point - data_sample_point) ), False, ), ): possible_solutions.sort(key=key, reverse=reverse) return possible_solutions[0]
@property def f_clock(self) -> int: """The CAN system clock frequency in Hz.""" return self._data["f_clock"] @property def nom_bitrate(self) -> int: """Nominal (arbitration phase) bitrate.""" return int(round(self.f_clock / (self.nbt * self.nom_brp))) @property def nom_brp(self) -> int: """Prescaler value for the arbitration phase.""" return self._data["nom_brp"] @property def nom_tq(self) -> int: """Nominal time quantum in nanoseconds""" return int(round(self.nom_brp / self.f_clock * 1e9)) @property def nbt(self) -> int: """Number of time quanta in a bit of the arbitration phase.""" return 1 + self.nom_tseg1 + self.nom_tseg2 @property def nom_tseg1(self) -> int: """Time segment 1 value of the arbitration phase. This is the sum of the propagation time segment and the phase buffer segment 1. """ return self._data["nom_tseg1"] @property def nom_tseg2(self) -> int: """Time segment 2 value of the arbitration phase. Also known as phase buffer segment 2.""" return self._data["nom_tseg2"] @property def nom_sjw(self) -> int: """Synchronization jump width of the arbitration phase. The phase buffer segments may be shortened or lengthened by this value. """ return self._data["nom_sjw"] @property def nom_sample_point(self) -> float: """Sample point of the arbitration phase in percent.""" return 100.0 * (1 + self.nom_tseg1) / (1 + self.nom_tseg1 + self.nom_tseg2) @property def data_bitrate(self) -> int: """Bitrate of the data phase in bit/s.""" return int(round(self.f_clock / (self.dbt * self.data_brp))) @property def data_brp(self) -> int: """Prescaler value for the data phase.""" return self._data["data_brp"] @property def data_tq(self) -> int: """Data time quantum in nanoseconds""" return int(round(self.data_brp / self.f_clock * 1e9)) @property def dbt(self) -> int: """Number of time quanta in a bit of the data phase.""" return 1 + self.data_tseg1 + self.data_tseg2 @property def data_tseg1(self) -> int: """TSEG1 value of the data phase. This is the sum of the propagation time segment and the phase buffer segment 1. """ return self._data["data_tseg1"] @property def data_tseg2(self) -> int: """TSEG2 value of the data phase. Also known as phase buffer segment 2.""" return self._data["data_tseg2"] @property def data_sjw(self) -> int: """Synchronization jump width of the data phase. The phase buffer segments may be shortened or lengthened by this value. """ return self._data["data_sjw"] @property def data_sample_point(self) -> float: """Sample point of the data phase in percent.""" return 100.0 * (1 + self.data_tseg1) / (1 + self.data_tseg1 + self.data_tseg2)
[docs] def oscillator_tolerance( self, node_loop_delay_ns: float = 250.0, bus_length_m: float = 10.0, ) -> float: """Oscillator tolerance in percent according to ISO 11898-1. :param float node_loop_delay_ns: Transceiver loop delay in nanoseconds. :param float bus_length_m: Bus length in meters. """ delay_per_meter = 5 bidirectional_propagation_delay_ns = 2 * ( node_loop_delay_ns + delay_per_meter * bus_length_m ) prop_seg = math.ceil(bidirectional_propagation_delay_ns / self.nom_tq) nom_phase_seg1 = self.nom_tseg1 - prop_seg nom_phase_seg2 = self.nom_tseg2 data_phase_seg2 = self.data_tseg2 df_clock_list = [ _oscillator_tolerance_condition_1(nom_sjw=self.nom_sjw, nbt=self.nbt), _oscillator_tolerance_condition_2( nbt=self.nbt, nom_phase_seg1=nom_phase_seg1, nom_phase_seg2=nom_phase_seg2, ), _oscillator_tolerance_condition_3(data_sjw=self.data_sjw, dbt=self.dbt), _oscillator_tolerance_condition_4( nom_phase_seg1=nom_phase_seg1, nom_phase_seg2=nom_phase_seg2, data_phase_seg2=data_phase_seg2, nbt=self.nbt, dbt=self.dbt, data_brp=self.data_brp, nom_brp=self.nom_brp, ), _oscillator_tolerance_condition_5( data_sjw=self.data_sjw, data_brp=self.data_brp, nom_brp=self.nom_brp, data_phase_seg2=data_phase_seg2, nom_phase_seg2=nom_phase_seg2, nbt=self.nbt, dbt=self.dbt, ), ] return max(0.0, min(df_clock_list) * 100)
[docs] def recreate_with_f_clock(self, f_clock: int) -> "BitTimingFd": """Return a new :class:`~can.BitTimingFd` instance with the given *f_clock* but the same bit rates and sample points. :param int f_clock: The CAN system clock frequency in Hz. :raises ValueError: if no suitable bit timings were found. """ # try the most simple solution first: another bitrate prescaler try: return BitTimingFd.from_bitrate_and_segments( f_clock=f_clock, nom_bitrate=self.nom_bitrate, nom_tseg1=self.nom_tseg1, nom_tseg2=self.nom_tseg2, nom_sjw=self.nom_sjw, data_bitrate=self.data_bitrate, data_tseg1=self.data_tseg1, data_tseg2=self.data_tseg2, data_sjw=self.data_sjw, strict=True, ) except ValueError: pass # create a new timing instance with the same sample points bt = BitTimingFd.from_sample_point( f_clock=f_clock, nom_bitrate=self.nom_bitrate, nom_sample_point=self.nom_sample_point, data_bitrate=self.data_bitrate, data_sample_point=self.data_sample_point, ) if ( abs(bt.nom_sample_point - self.nom_sample_point) > 1.0 or abs(bt.data_sample_point - self.data_sample_point) > 1.0 ): raise ValueError( "f_clock change failed because of sample point discrepancy." ) # adapt synchronization jump width, so it has the same size relative to bit time as self nom_sjw = int(round(self.nom_sjw / self.nbt * bt.nbt)) nom_sjw = max(1, min(bt.nom_tseg2, nom_sjw)) bt._data["nom_sjw"] = nom_sjw # pylint: disable=protected-access data_sjw = int(round(self.data_sjw / self.dbt * bt.dbt)) data_sjw = max(1, min(bt.data_tseg2, data_sjw)) bt._data["data_sjw"] = data_sjw # pylint: disable=protected-access bt._validate() # pylint: disable=protected-access return bt
def __str__(self) -> str: segments = [ f"NBR: {self.nom_bitrate:_} bit/s", f"NSP: {self.nom_sample_point:.2f}%", f"NBRP: {self.nom_brp}", f"NTSEG1: {self.nom_tseg1}", f"NTSEG2: {self.nom_tseg2}", f"NSJW: {self.nom_sjw}", f"DBR: {self.data_bitrate:_} bit/s", f"DSP: {self.data_sample_point:.2f}%", f"DBRP: {self.data_brp}", f"DTSEG1: {self.data_tseg1}", f"DTSEG2: {self.data_tseg2}", f"DSJW: {self.data_sjw}", f"CLK: {self.f_clock / 1e6:.0f}MHz", ] return ", ".join(segments) def __repr__(self) -> str: args = ", ".join(f"{key}={value}" for key, value in self.items()) return f"can.{self.__class__.__name__}({args})" def __getitem__(self, key: str) -> int: return cast(int, self._data.__getitem__(key)) def __len__(self) -> int: return self._data.__len__() def __iter__(self) -> Iterator[str]: return self._data.__iter__() def __eq__(self, other: object) -> bool: if not isinstance(other, BitTimingFd): return False return self._data == other._data def __hash__(self) -> int: return tuple(self._data.values()).__hash__()
def _oscillator_tolerance_condition_1(nom_sjw: int, nbt: int) -> float: """Arbitration phase - resynchronization""" return nom_sjw / (2 * 10 * nbt) def _oscillator_tolerance_condition_2( nbt: int, nom_phase_seg1: int, nom_phase_seg2: int ) -> float: """Arbitration phase - sampling of bit after error flag""" return min(nom_phase_seg1, nom_phase_seg2) / (2 * (13 * nbt - nom_phase_seg2)) def _oscillator_tolerance_condition_3(data_sjw: int, dbt: int) -> float: """Data phase - resynchronization""" return data_sjw / (2 * 10 * dbt) def _oscillator_tolerance_condition_4( nom_phase_seg1: int, nom_phase_seg2: int, data_phase_seg2: int, nbt: int, dbt: int, data_brp: int, nom_brp: int, ) -> float: """Data phase - sampling of bit after error flag""" return min(nom_phase_seg1, nom_phase_seg2) / ( 2 * ((6 * dbt - data_phase_seg2) * data_brp / nom_brp + 7 * nbt) ) def _oscillator_tolerance_condition_5( data_sjw: int, data_brp: int, nom_brp: int, nom_phase_seg2: int, data_phase_seg2: int, nbt: int, dbt: int, ) -> float: """Data phase - bit rate switch""" max_correctable_phase_shift = data_sjw - max(0.0, nom_brp / data_brp - 1) time_between_resync = 2 * ( (2 * nbt - nom_phase_seg2) * nom_brp / data_brp + data_phase_seg2 + 4 * dbt ) return max_correctable_phase_shift / time_between_resync