Socketcan

There are two implementations of socketcan backends. One written with ctypes to be compatible with Python 2 and 3, and one written for future versions of Python3 which feature native support.

Unless you’re running Python3.3 or lower the recommended backend is socketcan_native. For Python2.7 and Python3 <3.4, the available backend is socketcan_ctypes.

Socketcan Quickstart

The full documentation for socketcan can be found in the kernel docs at networking/can.txt. The CAN network driver provides a generic interface to setup, configure and monitor CAN devices. To configure bit-timing parameters use the program ip.

The virtual CAN driver (vcan)

The virtual CAN interfaces allow the transmission and reception of CAN frames without real CAN controller hardware. Virtual CAN network devices are usually named ‘vcanX’, like vcan0 vcan1 vcan2.

To create a virtual can interface using socketcan run the following:

sudo modprobe vcan
# Create a vcan network interface with a specific name
sudo ip link add dev vcan0 type vcan
sudo ip link set vcan0 up

Real Device

vcan should be substituted for can and vcan0 should be substituted for can0 if you are using real hardware. Setting the bitrate can also be done at the same time, for example to enable an existing can0 interface with a bitrate of 1MB:

sudo ip link set can0 up type can bitrate 1000000

Send Test Message

The can-utils library for linux includes a script cansend which is useful to send known payloads. For example to send a message on vcan0:

cansend vcan0 123#DEADBEEF

CAN Errors

A device may enter the “bus-off” state if too many errors occurred on the CAN bus. Then no more messages are received or sent. An automatic bus-off recovery can be enabled by setting the “restart-ms” to a non-zero value, e.g.:

sudo ip link set canX type can restart-ms 100

Alternatively, the application may realize the “bus-off” condition by monitoring CAN error frames and do a restart when appropriate with the command:

ip link set canX type can restart

Note that a restart will also create a CAN error frame.

List network interfaces

To reveal the newly created can0 or a vcan0 interface:

ifconfig

Display CAN statistics

ip -details -statistics link show vcan0

Network Interface Removal

To remove the network interface:

sudo ip link del vcan0

Wireshark

Wireshark supports socketcan and can be used to debug python-can messages. Fire it up and watch your new interface.

To spam a bus:

import time
import can

bustype = 'socketcan_native'
channel = 'vcan0'

def producer(id):
    """:param id: Spam the bus with messages including the data id."""
    bus = can.interface.Bus(channel=channel, bustype=bustype)
    for i in range(10):
        msg = can.Message(arbitration_id=0xc0ffee, data=[id, i, 0, 1, 3, 1, 4, 1], extended_id=False)
        bus.send(msg)
    # Issue #3: Need to keep running to ensure the writing threads stay alive. ?
    time.sleep(1)

producer(10)

With debugging turned right up this looks something like this:

../_images/wireshark.png

The process to follow bus traffic is even easier:

for message in Bus(can_interface):
    print(message)

Reading and Timeouts

Reading a single CAN message off of the bus is simple with the bus.recv() function:

import can

can_interface = 'vcan0'
bus = can.interface.Bus(can_interface, bustype='socketcan_native')
message = bus.recv()

By default, this performs a blocking read, which means bus.recv() won’t return until a CAN message shows up on the socket. You can optionally perform a blocking read with a timeout like this:

message = bus.recv(1.0)  # Timeout in seconds.

if message is None:
    print('Timeout occurred, no message.')

If you set the timeout to 0.0, the read will be executed as non-blocking, which means bus.recv(0.0) will return immediately, either with a Message object or None, depending on whether data was available on the socket.