

python-can

The python-can library provides Controller Area Network support for
Python [http://python.org/download/], providing common abstractions to
different hardware devices, and a suite of utilities for sending and receiving
messages on a CAN bus.

python-can runs any where Python runs; from high powered computers
with commercial CAN to usb devices right down to low powered devices running
linux such as a BeagleBone or RaspberryPi.

More concretely, some example uses of the library:

	Passively logging what occurs on a CAN bus. For example monitoring a
commercial vehicle using its OBD-II port.

	Testing of hardware that interacts via CAN. Modules found in
modern cars, motocycles, boats, and even wheelchairs have had components tested
from Python using this library.

	Prototyping new hardware modules or software algorithms in-the-loop. Easily
interact with an existing bus.

	Creating virtual modules to prototype CAN bus communication.

Brief example of the library in action: connecting to a CAN bus, creating and sending a message:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	#!/usr/bin/env python
coding: utf-8

"""
This example shows how sending a single message works.
"""

from __future__ import print_function

import can

def send_one():

 # this uses the default configuration (for example from the config file)
 # see http://python-can.readthedocs.io/en/latest/configuration.html
 bus = can.interface.Bus()

 # Using specific buses works similar:
 # bus = can.interface.Bus(bustype='socketcan', channel='vcan0', bitrate=250000)
 # bus = can.interface.Bus(bustype='pcan', channel='PCAN_USBBUS1', bitrate=250000)
 # bus = can.interface.Bus(bustype='ixxat', channel=0, bitrate=250000)
 # bus = can.interface.Bus(bustype='vector', app_name='CANalyzer', channel=0, bitrate=250000)
 # ...

 msg = can.Message(arbitration_id=0xc0ffee,
 data=[0, 25, 0, 1, 3, 1, 4, 1],
 extended_id=True)

 try:
 bus.send(msg)
 print("Message sent on {}".format(bus.channel_info))
 except can.CanError:
 print("Message NOT sent")

if __name__ == '__main__':
 send_one()

Contents:

	Installation
	GNU/Linux dependencies

	Windows dependencies

	Installing python-can in development mode

	Configuration
	In Code

	Configuration File

	Environment Variables

	Interface Names

	Library API
	Bus

	Thread safe bus

	Message

	Listeners

	Asyncio support

	Broadcast Manager

	Utilities

	Notifier

	Errors

	CAN Interface Modules
	SocketCAN

	Kvaser’s CANLIB

	CAN over Serial

	CAN over Serial / SLCAN

	IXXAT Virtual CAN Interface

	PCAN Basic API

	USB2CAN Interface

	NI-CAN

	isCAN

	NEOVI Interface

	Vector

	Virtual

	Scripts
	can.logger

	can.player

	can.viewer

	Developer’s Overview
	Contributing

	Building & Installing

	Creating a new interface/backend

	About the BusABC class

	Code Structure

	Creating a new Release

	History and Roadmap
	Background

	Acknowledgements

	Support for CAN within Python

Known Bugs

See the project bug tracker [https://github.com/hardbyte/python-can/issues] on github. Patches and pull requests very welcome!

Documentation generated

Oct 04, 2018

Installation

Install can with pip:

$ pip install python-can

As most likely you will want to interface with some hardware, you may
also have to install platform dependencies. Be sure to check any other
specifics for your hardware in CAN Interface Modules.

GNU/Linux dependencies

Reasonably modern Linux Kernels (2.6.25 or newer) have an implementation
of socketcan. This version of python-can will directly use socketcan
if called with Python 3.3 or greater, otherwise that interface is used
via ctypes.

Windows dependencies

Kvaser

To install python-can using the Kvaser CANLib SDK as the backend:

	Install the latest stable release of
Python [http://python.org/download/].

	Install Kvaser’s latest Windows CANLib
drivers [http://www.kvaser.com/en/downloads.html].

	Test that Kvaser’s own tools work to ensure the driver is properly
installed and that the hardware is working.

PCAN

Download and install the latest driver for your interface from
PEAK-System’s download page [http://www.peak-system.com/Support.55.0.html?&L=1].

Note that PCANBasic API timestamps count seconds from system startup. To
convert these to epoch times, the uptime library is used. If it is not
available, the times are returned as number of seconds from system
startup. To install the uptime library, run pip install uptime.

This library can take advantage of the Python for Windows Extensions [https://sourceforge.net/projects/pywin32] library if installed.
It will be used to get notified of new messages instead of
the CPU intensive polling that will otherwise have be used.

IXXAT

To install python-can using the IXXAT VCI V3 SDK as the backend:

	Install IXXAT’s latest Windows VCI V3 SDK
drivers [http://www.ixxat.com/support/file-and-documents-download/drivers/vci-v3-driver-download].

	Test that IXXAT’s own tools (i.e. MiniMon) work to ensure the driver
is properly installed and that the hardware is working.

NI-CAN

Download and install the NI-CAN drivers from
National Instruments [http://www.ni.com/downloads/ni-drivers/].

Currently the driver only supports 32-bit Python on Windows.

neoVI

See NEOVI Interface.

Installing python-can in development mode

A “development” install of this package allows you to make changes locally
or pull updates from the Mercurial repository and use them without having to
reinstall. Download or clone the source repository then:

python setup.py develop

Configuration

Usually this library is used with a particular CAN interface, this can be
specified in code, read from configuration files or environment variables.

See can.util.load_config() for implementation.

In Code

The can object exposes an rc dictionary which can be used to set
the interface and channel before importing from can.interfaces.

import can
can.rc['interface'] = 'socketcan'
can.rc['channel'] = 'vcan0'
can.rc['bitrate'] = 500000
from can.interfaces.interface import Bus

bus = Bus()

You can also specify the interface and channel for each Bus instance:

import can

bus = can.interface.Bus(bustype='socketcan', channel='vcan0', bitrate=500000)

Configuration File

On Linux systems the config file is searched in the following paths:

	~/can.conf

	/etc/can.conf

	$HOME/.can

	$HOME/.canrc

On Windows systems the config file is searched in the following paths:

	~/can.conf

	can.ini (current working directory)

	$APPDATA/can.ini

The configuration file sets the default interface and channel:

[default]
interface = <the name of the interface to use>
channel = <the channel to use by default>
bitrate = <the bitrate in bits/s to use by default>

The configuration can also contain additional sections:

[default]
interface = <the name of the interface to use>
channel = <the channel to use by default>
bitrate = <the bitrate in bits/s to use by default>

[HS]
All the values from the 'default' section are inherited
channel = <the channel to use>
bitrate = <the bitrate in bits/s to use. i.e. 500000>

[MS]
All the values from the 'default' section are inherited
channel = <the channel to use>
bitrate = <the bitrate in bits/s to use. i.e. 125000>

from can.interfaces.interface import Bus

hs_bus = Bus(config_section='HS')
ms_bus = Bus(config_section='MS')

Environment Variables

Configuration can be pulled from these environmental variables:

	CAN_INTERFACE

	CAN_CHANNEL

	CAN_BITRATE

Interface Names

Lookup table of interface names:

	Name

	Documentation

	"socketcan"

	SocketCAN

	"kvaser"

	Kvaser’s CANLIB

	"serial"

	CAN over Serial

	"slcan"

	CAN over Serial / SLCAN

	"ixxat"

	IXXAT Virtual CAN Interface

	"pcan"

	PCAN Basic API

	"usb2can"

	USB2CAN Interface

	"nican"

	NI-CAN

	"iscan"

	isCAN

	"neovi"

	NEOVI Interface

	"vector"

	Vector

	"virtual"

	Virtual

Library API

The main objects are the BusABC and the Message.
A form of CAN interface is also required.

Hint

Check the backend specific documentation for any implementation specific details.

	Bus

	Thread safe bus

	Message

	Listeners

	Asyncio support

	Broadcast Manager

Utilities

Utilities and configuration file parsing.

	
can.util.channel2int(channel)

	Try to convert the channel to an integer.

	Parameters

	channel – Channel string (e.g. can0, CAN1) or integer

	Returns

	Channel integer or None if unsuccessful

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
can.util.dlc2len(dlc)

	Calculate the data length from DLC.

	Parameters

	dlc (int [https://docs.python.org/3/library/functions.html#int]) – DLC (0-15)

	Returns

	Data length in number of bytes (0-64)

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
can.util.len2dlc(length)

	Calculate the DLC from data length.

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – Length in number of bytes (0-64)

	Returns

	DLC (0-15)

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
can.util.load_config(path=None, config=None, context=None)

	Returns a dict with configuration details which is loaded from (in this order):

	config

	can.rc

	Environment variables CAN_INTERFACE, CAN_CHANNEL, CAN_BITRATE

	Config files /etc/can.conf or ~/.can or ~/.canrc
where the latter may add or replace values of the former.

Interface can be any of the strings from can.VALID_INTERFACES for example:
kvaser, socketcan, pcan, usb2can, ixxat, nican, virtual.

Note

The key bustype is copied to interface if that one is missing
and does never appear in the result.

	Parameters

	
	path – Optional path to config file.

	config – A dict which may set the ‘interface’, and/or the ‘channel’, or neither.
It may set other values that are passed through.

	context – Extra ‘context’ pass to config sources. This can be use to section
other than ‘default’ in the configuration file.

	Returns

	A config dictionary that should contain ‘interface’ & ‘channel’:

{
 'interface': 'python-can backend interface to use',
 'channel': 'default channel to use',
 # possibly more
}

Note None will be used if all the options are exhausted without
finding a value.

All unused values are passed from config over to this.

	Raises

	NotImplementedError if the interface isn’t recognized

	
can.util.load_environment_config()

	Loads config dict from environmental variables (if set):

	CAN_INTERFACE

	CAN_CHANNEL

	CAN_BITRATE

	
can.util.load_file_config(path=None, section=None)

	Loads configuration from file with following content:

[default]
interface = socketcan
channel = can0

	Parameters

	
	path – path to config file. If not specified, several sensible
default locations are tried depending on platform.

	section – name of the section to read configuration from.

	
can.util.set_logging_level(level_name=None)

	Set the logging level for the “can” logger.
Expects one of: ‘critical’, ‘error’, ‘warning’, ‘info’, ‘debug’, ‘subdebug’

	
can.detect_available_configs()

	Detect all configurations/channels that the interfaces could
currently connect with.

This might be quite time consuming.

Automated configuration detection may not be implemented by
every interface on every platform. This method will not raise
an error in that case, but with rather return an empty list
for that interface.

	Parameters

	interfaces – either
- the name of an interface to be searched in as a string,
- an iterable of interface names to search in, or
- None to search in all known interfaces.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Returns

	an iterable of dicts, each suitable for usage in
the constructor of can.interface.Bus.

Notifier

The Notifier object is used as a message distributor for a bus.

	
class can.Notifier(bus, listeners, timeout=1.0, loop=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Manages the distribution of Messages from a given bus/buses to a
list of listeners.

	Parameters

	
	bus (can.BusABC) – A Bus or a list of buses to listen to.

	listeners (list [https://docs.python.org/3/library/stdtypes.html#list]) – An iterable of Listener

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – An optional maximum number of seconds to wait for any message.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop]) – An asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] event loop to schedule listeners in.

	
add_bus(bus)

	Add a bus for notification.

	Parameters

	bus (can.BusABC) – CAN bus instance.

	
add_listener(listener)

	Add new Listener to the notification list.
If it is already present, it will be called two times
each time a message arrives.

	Parameters

	listener (can.Listener) – Listener to be added to
the list to be notified

	
exception = None

	Exception raised in thread

	
remove_listener(listener)

	Remove a listener from the notification list. This method
trows an exception if the given listener is not part of the
stored listeners.

	Parameters

	listener (can.Listener) – Listener to be removed from
the list to be notified

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if listener was never added to this notifier

	
stop(timeout=5)

	Stop notifying Listeners when new Message objects arrive
and call stop() on each Listener.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Max time in seconds to wait for receive threads to finish.
Should be longer than timeout given at instantiation.

Errors

	
class can.CanError

	Bases: OSError [https://docs.python.org/3/library/exceptions.html#OSError]

Indicates an error with the CAN network.

Bus

The BusABC class, as the name suggests, provides an abstraction of a CAN bus.
The bus provides a wrapper around a physical or virtual CAN Bus.
An interface specific instance of the BusABC is created by the Bus
class, for example:

vector_bus = can.Bus(interface='vector', ...)

That bus is then able to handle the interface specific software/hardware interactions
and implements the BusABC API.

A thread safe bus wrapper is also available, see Thread safe bus.

Autoconfig Bus

	
class can.Bus(channel, can_filters=None, **config)

	Bases: can.bus.BusABC

Bus wrapper with configuration loading.

Instantiates a CAN Bus of the given interface, falls back to reading a
configuration file from default locations.

Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters
as it handles generic tasks like applying filters.

	Parameters

	
	channel – The can interface identifier. Expected type is backend dependent.

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See set_filters() for details.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any backend dependent configurations are passed in this dictionary

API

	
class can.BusABC(channel, can_filters=None, **config)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The CAN Bus Abstract Base Class that serves as the basis
for all concrete interfaces.

This class may be used as an iterator over the received messages.

Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters
as it handles generic tasks like applying filters.

	Parameters

	
	channel – The can interface identifier. Expected type is backend dependent.

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See set_filters() for details.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any backend dependent configurations are passed in this dictionary

	
RECV_LOGGING_LEVEL = 9

	Log level for received messages

	
channel_info = 'unknown'

	a string describing the underlying bus and/or channel

	
filters

	Modify the filters of this bus. See set_filters()
for details.

	
flush_tx_buffer()

	Discard every message that may be queued in the output buffer(s).

	
recv(timeout=None)

	Block waiting for a message from the Bus.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – seconds to wait for a message or None to wait indefinitely

	Return type

	can.Message or None [https://docs.python.org/3/library/constants.html#None]

	Returns

	None on timeout or a can.Message object.

	Raises

	can.CanError – if an error occurred while reading

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
send_periodic(msg, period, duration=None, store_task=True)

	Start sending a message at a given period on this bus.

The task will be active until one of the following conditions are met:

	the (optional) duration expires

	the Bus instance goes out of scope

	the Bus instance is shutdown

	Bus.stop_all_periodic_tasks() is called

	the task’s Task.stop() method is called.

	Parameters

	
	msg (can.Message) – Message to transmit

	period (float [https://docs.python.org/3/library/functions.html#float]) – Period in seconds between each message

	duration (float [https://docs.python.org/3/library/functions.html#float]) – The duration to keep sending this message at given rate. If
no duration is provided, the task will continue indefinitely.

	store_task (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default) the task will be attached to this Bus instance.
Disable to instead manage tasks manually.

	Returns

	A started task instance. Note the task can be stopped (and depending on
the backend modified) by calling the stop() method.

	Return type

	can.broadcastmanager.CyclicSendTaskABC

Note

Note the duration before the message stops being sent may not
be exactly the same as the duration specified by the user. In
general the message will be sent at the given rate until at
least duration seconds.

Note

For extremely long running Bus instances with many short lived tasks the default
api with store_task==True may not be appropriate as the stopped tasks are
still taking up memory as they are associated with the Bus instance.

	
set_filters(filters=None)

	Apply filtering to all messages received by this Bus.

All messages that match at least one filter are returned.
If filters is None or a zero length sequence, all
messages are matched.

Calling without passing any filters will reset the applied
filters to None.

	Parameters

	filters – A iterable of dictionaries each containing a “can_id”,
a “can_mask”, and an optional “extended” key.

>>> [{"can_id": 0x11, "can_mask": 0x21, "extended": False}]

A filter matches, when
<received_can_id> & can_mask == can_id & can_mask.
If extended is set as well, it only matches messages where
<received_is_extended> == extended. Else it matches every
messages based only on the arbitration ID and mask.

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

	
state

	Return the current state of the hardware
:return: ACTIVE, PASSIVE or ERROR
:rtype: NamedTuple

	
stop_all_periodic_tasks(remove_tasks=True)

	Stop sending any messages that were started using bus.send_periodic

	Parameters

	remove_tasks (bool [https://docs.python.org/3/library/functions.html#bool]) – Stop tracking the stopped tasks.

Transmitting

Writing individual messages to the bus is done by calling the send() method
and passing a Message instance. Periodic sending is controlled by the
broadcast manager.

Receiving

Reading from the bus is achieved by either calling the recv() method or
by directly iterating over the bus:

for msg in bus:
 print(msg.data)

Alternatively the Listener api can be used, which is a list of Listener
subclasses that receive notifications when new messages arrive.

Filtering

Message filtering can be set up for each bus. Where the interface supports it, this is carried
out in the hardware or kernel layer - not in Python.

Thread safe bus

This thread safe version of the BusABC class can be used by multiple threads at once.
Sending and receiving is locked separately to avoid unnecessary delays.
Conflicting calls are executed by blocking until the bus is accessible.

It can be used exactly like the normal BusABC:

‘socketcan’ is only an example interface, it works with all the others too
my_bus = can.ThreadSafeBus(interface=’socketcan’, channel=’vcan0’)
my_bus.send(…)
my_bus.recv(…)

	
class can.ThreadSafeBus(*args, **kwargs)

	Bases: ObjectProxy

Contains a thread safe can.BusABC implementation that
wraps around an existing interface instance. All public methods
of that base class are now safe to be called from multiple threads.
The send and receive methods are synchronized separately.

Use this as a drop-in replacement for BusABC.

Note

This approach assumes that both send() and
_recv_internal() of the underlying bus instance can be
called simultaneously, and that the methods use _recv_internal()
instead of recv() directly.

Message

	
class can.Message(timestamp=0.0, arbitration_id=0, is_extended_id=None, is_remote_frame=False, is_error_frame=False, channel=None, dlc=None, data=None, is_fd=False, bitrate_switch=False, error_state_indicator=False, extended_id=True, check=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Message object is used to represent CAN messages for
sending, receiving and other purposes like converting between different
logging formats.

Messages can use extended identifiers, be remote or error frames, contain
data and may be associated to a channel.

Messages are always compared by identity and never by value, because that
may introduce unexpected behaviour. See also equals().

copy() [https://docs.python.org/3/library/copy.html#copy.copy]/deepcopy() [https://docs.python.org/3/library/copy.html#copy.deepcopy] is supported as well.

Messages do not support “dynamic” attributes, meaning any others that the
documented ones.

To create a message object, simply provide any of the below attributes
together with additional parameters as keyword arguments to the constructor.

	Parameters

	check (bool [https://docs.python.org/3/library/functions.html#bool]) – By default, the constructor of this class does not strictly check the input.
Thus, the caller must prevent the creation of invalid messages or
set this parameter to True, to raise an Error on invalid inputs.
Possible problems include the dlc field not matching the length of data
or creating a message with both is_remote_frame and is_error_frame set to True.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – iff check is set to True and one or more arguments were invalid

One can instantiate a Message defining data, and optional
arguments for all attributes such as arbitration ID, flags, and timestamp.

>>> from can import Message
>>> test = Message(data=[1, 2, 3, 4, 5])
>>> test.data
bytearray(b'\x01\x02\x03\x04\x05')
>>> test.dlc
5
>>> print(test)
Timestamp: 0.000000 ID: 00000000 010 DLC: 5 01 02 03 04 05

The arbitration_id field in a CAN message may be either
11 bits (standard addressing, CAN 2.0A) or 29 bits (extended addressing, CAN
2.0B) in length, and python-can exposes this difference with the
is_extended_id attribute.

	
timestamp

	
	Type

	float [https://docs.python.org/3/library/functions.html#float]

The timestamp field in a CAN message is a floating point number representing when
the message was received since the epoch in seconds. Where possible this will be
timestamped in hardware.

	
arbitration_id

	
	Type

	int [https://docs.python.org/3/library/functions.html#int]

The frame identifier used for arbitration on the bus.

The arbitration ID can take an int between 0 and the
maximum value allowed depending on the is_extended_id flag
(either 211 - 1 for 11-bit IDs, or
229 - 1 for 29-bit identifiers).

>>> print(Message(extended_id=False, arbitration_id=100))
Timestamp: 0.000000 ID: 0064 S DLC: 0

	
data

	
	Type

	bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

The data parameter of a CAN message is exposed as a bytearray
with length between 0 and 8.

>>> example_data = bytearray([1, 2, 3])
>>> print(Message(data=example_data))
Timestamp: 0.000000 ID: 00000000 X DLC: 3 01 02 03

A Message can also be created with bytes, or lists of ints:

>>> m1 = Message(data=[0x64, 0x65, 0x61, 0x64, 0x62, 0x65, 0x65, 0x66])
>>> print(m1.data)
bytearray(b'deadbeef')
>>> m2 = Message(data=b'deadbeef')
>>> m2.data
bytearray(b'deadbeef')

	
dlc

	
	Type

	int [https://docs.python.org/3/library/functions.html#int]

The DLC parameter of a CAN message is an integer
between 0 and 8 representing the frame payload length.

In the case of a CAN FD message, this indicates the data length in
number of bytes.

>>> m = Message(data=[1, 2, 3])
>>> m.dlc
3

Note

The DLC value does not necessarily define the number of bytes of data
in a message.

Its purpose varies depending on the frame type - for data frames it
represents the amount of data contained in the message, in remote
frames it represents the amount of data being requested.

	
channel

	
	Type

	str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]

This might store the channel from which the message came.

	
is_extended_id

	
	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

This flag controls the size of the arbitration_id field.
Previously this was exposed as id_type.

>>> print(Message(extended_id=False))
Timestamp: 0.000000 ID: 0000 S DLC: 0
>>> print(Message(extended_id=True))
Timestamp: 0.000000 ID: 00000000 X DLC: 0

Note

The Message.__init__() argument extended_id has been deprecated in favor of
is_extended_id, but will continue to work for the 3.x release series.

	
is_error_frame

	
	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

This boolean parameter indicates if the message is an error frame or not.

>>> print(Message(is_error_frame=True))
Timestamp: 0.000000 ID: 00000000 X E DLC: 0

	
is_remote_frame

	
	Type

	boolean

This boolean attribute indicates if the message is a remote frame or a data frame, and
modifies the bit in the CAN message’s flags field indicating this.

>>> print(Message(is_remote_frame=True))
Timestamp: 0.000000 ID: 00000000 X R DLC: 0

	
is_fd

	
	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

Indicates that this message is a CAN FD message.

	
bitrate_switch

	
	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

If this is a CAN FD message, this indicates that a higher bitrate
was used for the data transmission.

	
error_state_indicator

	
	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

If this is a CAN FD message, this indicates an error active state.

	
__str__()

	A string representation of a CAN message:

>>> from can import Message
>>> test = Message()
>>> print(test)
Timestamp: 0.000000 ID: 00000000 X DLC: 0
>>> test2 = Message(data=[1, 2, 3, 4, 5])
>>> print(test2)
Timestamp: 0.000000 ID: 00000000 X DLC: 5 01 02 03 04 05

The fields in the printed message are (in order):

	timestamp,

	arbitration ID,

	flags,

	dlc,

	and data.

The flags field is represented as one, two or three letters:

	X if the is_extended_id attribute is set, otherwise S,

	E if the is_error_frame attribute is set,

	R if the is_remote_frame attribute is set.

The arbitration ID field is represented as either a four or eight digit
hexadecimal number depending on the length of the arbitration ID
(11-bit or 29-bit).

Each of the bytes in the data field (when present) are represented as
two-digit hexadecimal numbers.

	
equals(other, timestamp_delta=1e-06)

	Compares a given message with this one.

	Parameters

	
	other (can.Message) – the message to compare with

	timestamp_delta (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the maximum difference at which two timestamps are
still considered equal or None to not compare timestamps

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	True iff the given message equals this one

Listeners

Listener

The Listener class is an “abstract” base class for any objects which wish to
register to receive notifications of new messages on the bus. A Listener can
be used in two ways; the default is to call the Listener with a new
message, or by calling the method on_message_received.

Listeners are registered with Notifier object(s) which ensure they are
notified whenever a new message is received.

Subclasses of Listener that do not override on_message_received will cause
NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] to be thrown when a message is received on
the CAN bus.

	
class can.Listener

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The basic listener that can be called directly to handle some
CAN message:

listener = SomeListener()
msg = my_bus.recv()

now either call
listener(msg)
or
listener.on_message_received(msg)

	
on_error(exc)

	This method is called to handle any exception in the receive thread.

	Parameters

	exc (Exception [https://docs.python.org/3/library/exceptions.html#Exception]) – The exception causing the thread to stop

	
on_message_received(msg)

	This method is called to handle the given message.

	Parameters

	msg (can.Message) – the delivered message

	
stop()

	Override to cleanup any open resources.

There are some listeners that already ship together with python-can
and are listed below.
Some of them allow messages to be written to files, and the corresponding file
readers are also documented here.

Warning

Please note that writing and the reading a message might not always yield a
completely unchanged message again, since some properties are not (yet)
supported by some file formats.

BufferedReader

	
class can.BufferedReader

	Bases: can.listener.Listener

A BufferedReader is a subclass of Listener which implements a
message buffer: that is, when the can.BufferedReader instance is
notified of a new message it pushes it into a queue of messages waiting to
be serviced. The messages can then be fetched with
get_message().

Putting in messages after stop() has be called will raise
an exception, see on_message_received().

	Attr bool is_stopped

	True iff the reader has been stopped

	
get_message(timeout=0.5)

	Attempts to retrieve the latest message received by the instance. If no message is
available it blocks for given timeout or until a message is received, or else
returns None (whichever is shorter). This method does not block after
can.BufferedReader.stop() has been called.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – The number of seconds to wait for a new message.

	Rytpe

	can.Message or None

	Returns

	the message if there is one, or None if there is not.

	
on_message_received(msg)

	Append a message to the buffer.

	Raises

	BufferError
if the reader has already been stopped

	
stop()

	Prohibits any more additions to this reader.

	
class can.AsyncBufferedReader(loop=None)

	Bases: can.listener.Listener

A message buffer for use with asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio].

See Asyncio support for how to use with can.Notifier.

Can also be used as an asynchronous iterator:

async for msg in reader:
 print(msg)

	
get_message()

	Retrieve the latest message when awaited for:

msg = await reader.get_message()

	Return type

	can.Message

	Returns

	The CAN message.

	
on_message_received(msg)

	Append a message to the buffer.

Must only be called inside an event loop!

Logger

The can.Logger uses the following can.Listener types to
create log files with different file types of the messages received.

	
class can.Logger(file, mode='rt')

	Bases: can.io.generic.BaseIOHandler, can.listener.Listener

Logs CAN messages to a file.

	The format is determined from the file format which can be one of:

	
	.asc: can.ASCWriter

	.blf can.BLFWriter

	.csv: can.CSVWriter

	.db: can.SqliteWriter

	.log can.CanutilsLogWriter

	other: can.Printer

Note

This class itself is just a dispatcher, and any positional an keyword
arguments are passed on to the returned instance.

	Parameters

	
	file – a path-like object to open a file, a file-like object
to be used as a file or None to not use a file at all

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – the mode that should be used to open the file, see
builtin.open(), ignored if file is None

Printer

	
class can.Printer(file=None)

	Bases: can.io.generic.BaseIOHandler, can.listener.Listener

The Printer class is a subclass of Listener which simply prints
any messages it receives to the terminal (stdout). A message is tunred into a
string using __str__().

	Attr bool write_to_file

	True iff this instance prints to a file instead of
standard out

	Parameters

	file – an optional path-like object or as file-like object to “print”
to instead of writing to standard out (stdout)
If this is a file-like object, is has to opened in text
write mode, not binary write mode.

	
on_message_received(msg)

	This method is called to handle the given message.

	Parameters

	msg (can.Message) – the delivered message

CSVWriter

	
class can.CSVWriter(file, append=False)

	Bases: can.io.generic.BaseIOHandler, can.listener.Listener

Writes a comma separated text file with a line for
each message. Includes a header line.

The columns are as follows:

	name of column

	format description

	example

	timestamp

	decimal float

	1483389946.197

	arbitration_id

	hex

	0x00dadada

	extended

	1 == True, 0 == False

	1

	remote

	1 == True, 0 == False

	0

	error

	1 == True, 0 == False

	0

	dlc

	int

	6

	data

	base64 encoded

	WzQyLCA5XQ==

Each line is terminated with a platform specific line seperator.

	Parameters

	
	file – a path-like object or as file-like object to write to
If this is a file-like object, is has to opened in text
write mode, not binary write mode.

	append (bool [https://docs.python.org/3/library/functions.html#bool]) – if set to True messages are appended to
the file and no header line is written, else
the file is truncated and starts with a newly
written header line

	
on_message_received(msg)

	This method is called to handle the given message.

	Parameters

	msg (can.Message) – the delivered message

	
class can.CSVReader(file)

	Bases: can.io.generic.BaseIOHandler

Iterator over CAN messages from a .csv file that was
generated by CSVWriter or that uses the same
format as described there. Assumes that there is a header
and thus skips the first line.

Any line seperator is accepted.

	Parameters

	file – a path-like object or as file-like object to read from
If this is a file-like object, is has to opened in text
read mode, not binary read mode.

SqliteWriter

	
class can.SqliteWriter(file, table_name='messages')

	Bases: can.io.generic.BaseIOHandler, can.listener.BufferedReader

Logs received CAN data to a simple SQL database.

The sqlite database may already exist, otherwise it will
be created when the first message arrives.

Messages are internally buffered and written to the SQL file in a background
thread. Ensures that all messages that are added before calling stop()
are actually written to the database after that call returns. Thus, calling
stop() may take a while.

	Attr str table_name

	the name of the database table used for storing the messages

	Attr int num_frames

	the number of frames actally writtem to the database, this
excludes messages that are still buffered

	Attr float last_write

	the last time a message war actually written to the database,
as given by time.time()

Note

When the listener’s stop() method is called the
thread writing to the database will continue to receive and internally
buffer messages if they continue to arrive before the
GET_MESSAGE_TIMEOUT.

If the GET_MESSAGE_TIMEOUT expires before a message
is received, the internal buffer is written out to the database file.

However if the bus is still saturated with messages, the Listener
will continue receiving until the MAX_TIME_BETWEEN_WRITES
timeout is reached or more than
MAX_BUFFER_SIZE_BEFORE_WRITES messages are buffered.

Note

The database schema is given in the documentation of the loggers.

	Parameters

	
	file – a str or since Python 3.7 a path like object that points
to the database file to use

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the table to store messages in

Warning

In contrary to all other readers/writers the Sqlite handlers
do not accept file-like objects as the file parameter.

	
GET_MESSAGE_TIMEOUT = 0.25

	Number of seconds to wait for messages from internal queue

	
MAX_BUFFER_SIZE_BEFORE_WRITES = 500

	Maximum number of messages to buffer before writing to the database

	
MAX_TIME_BETWEEN_WRITES = 5.0

	Maximum number of seconds to wait between writes to the database

	
stop()

	Stops the reader an writes all remaining messages to the database. Thus, this
might take a while an block.

	
class can.SqliteReader(file, table_name='messages')

	Bases: can.io.generic.BaseIOHandler

Reads recorded CAN messages from a simple SQL database.

This class can be iterated over or used to fetch all messages in the
database with read_all().

Calling len() on this object might not run in constant time.

	Attr str table_name

	the name of the database table used for storing the messages

Note

The database schema is given in the documentation of the loggers.

	Parameters

	
	file – a str or since Python 3.7 a path like object that points
to the database file to use

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the table to look for the messages

Warning

In contrary to all other readers/writers the Sqlite handlers
do not accept file-like objects as the file parameter.
It also runs in append=True mode all the time.

	
read_all()

	Fetches all messages in the database.

	Return type

	Generator[can.Message]

	
stop()

	Closes the connection to the database.

Database table format

The messages are written to the table messages in the sqlite database
by default. The table is created if it does not already exist.

The entries are as follows:

	Name

	Data type

	Note

	ts

	REAL

	The timestamp of the message

	arbitration_id

	INTEGER

	The arbitration id, might use the extended format

	extended

	INTEGER

	1 if the arbitration id uses the extended format, else 0

	remote

	INTEGER

	1 if the message is a remote frame, else 0

	error

	INTEGER

	1 if the message is an error frame, else 0

	dlc

	INTEGER

	The data length code (DLC)

	data

	BLOB

	The content of the message

ASC (.asc Logging format)

ASCWriter logs CAN data to an ASCII log file compatible with other CAN tools such as
Vector CANalyzer/CANoe and other.
Since no official specification exists for the format, it has been reverse-
engineered from existing log files. One description of the format can be found here [http://zone.ni.com/reference/en-XX/help/370859J-01/dlgcanconverter/dlgcanconverter/canconverter_ascii_logfiles/].

Note

Channels will be converted to integers.

	
class can.ASCWriter(file, channel=1)

	Bases: can.io.generic.BaseIOHandler, can.listener.Listener

Logs CAN data to an ASCII log file (.asc).

The measurement starts with the timestamp of the first registered message.
If a message has a timestamp smaller than the previous one or None,
it gets assigned the timestamp that was written for the last message.
It the first message does not have a timestamp, it is set to zero.

	Parameters

	
	file – a path-like object or as file-like object to write to
If this is a file-like object, is has to opened in text
write mode, not binary write mode.

	channel – a default channel to use when the message does not
have a channel set

	
log_event(message, timestamp=None)

	Add a message to the log file.

	Parameters

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – an arbitrary message

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – the absolute timestamp of the event

	
on_message_received(msg)

	This method is called to handle the given message.

	Parameters

	msg (can.Message) – the delivered message

	
stop()

	Override to cleanup any open resources.

ASCReader reads CAN data from ASCII log files .asc,
as further references can-utils can be used:
asc2log [https://github.com/linux-can/can-utils/blob/master/asc2log.c],
log2asc [https://github.com/linux-can/can-utils/blob/master/log2asc.c].

	
class can.ASCReader(file)

	Bases: can.io.generic.BaseIOHandler

Iterator of CAN messages from a ASC logging file.

TODO: turn relative timestamps back to absolute form

	Parameters

	file – a path-like object or as file-like object to read from
If this is a file-like object, is has to opened in text
read mode, not binary read mode.

Log (.log can-utils Logging format)

CanutilsLogWriter logs CAN data to an ASCII log file compatible with can-utils <https://github.com/linux-can/can-utils>
As specification following references can-utils can be used:
asc2log [https://github.com/linux-can/can-utils/blob/master/asc2log.c],
log2asc [https://github.com/linux-can/can-utils/blob/master/log2asc.c].

	
class can.CanutilsLogWriter(file, channel='vcan0', append=False)

	Bases: can.io.generic.BaseIOHandler, can.listener.Listener

Logs CAN data to an ASCII log file (.log).
This class is is compatible with “candump -L”.

If a message has a timestamp smaller than the previous one (or 0 or None),
it gets assigned the timestamp that was written for the last message.
It the first message does not have a timestamp, it is set to zero.

	Parameters

	
	file – a path-like object or as file-like object to write to
If this is a file-like object, is has to opened in text
write mode, not binary write mode.

	channel – a default channel to use when the message does not
have a channel set

	append (bool [https://docs.python.org/3/library/functions.html#bool]) – if set to True messages are appended to
the file, else the file is truncated

	
on_message_received(msg)

	This method is called to handle the given message.

	Parameters

	msg (can.Message) – the delivered message

CanutilsLogReader reads CAN data from ASCII log files .log

	
class can.CanutilsLogReader(file)

	Bases: can.io.generic.BaseIOHandler

Iterator over CAN messages from a .log Logging File (candump -L).

Note

.log-format looks for example like this:

(0.0) vcan0 001#8d00100100820100

	Parameters

	file – a path-like object or as file-like object to read from
If this is a file-like object, is has to opened in text
read mode, not binary read mode.

BLF (Binary Logging Format)

Implements support for BLF (Binary Logging Format) which is a proprietary
CAN log format from Vector Informatik GmbH.

The data is stored in a compressed format which makes it very compact.

Note

Channels will be converted to integers.

	
class can.BLFWriter(file, channel=1)

	Bases: can.io.generic.BaseIOHandler, can.listener.Listener

Logs CAN data to a Binary Logging File compatible with Vector’s tools.

	Parameters

	file – a path-like object or as file-like object to write to
If this is a file-like object, is has to opened in binary
write mode, not text write mode.

	
COMPRESSION_LEVEL = 9

	ZLIB compression level

	
MAX_CACHE_SIZE = 131072

	Max log container size of uncompressed data

	
log_event(text, timestamp=None)

	Add an arbitrary message to the log file as a global marker.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The group name of the marker.

	timestamp (float [https://docs.python.org/3/library/functions.html#float]) – Absolute timestamp in Unix timestamp format. If not given, the
marker will be placed along the last message.

	
on_message_received(msg)

	This method is called to handle the given message.

	Parameters

	msg (can.Message) – the delivered message

	
stop()

	Stops logging and closes the file.

The following class can be used to read messages from BLF file:

	
class can.BLFReader(file)

	Bases: can.io.generic.BaseIOHandler

Iterator of CAN messages from a Binary Logging File.

Only CAN messages and error frames are supported. Other object types are
silently ignored.

	Parameters

	file – a path-like object or as file-like object to read from
If this is a file-like object, is has to opened in binary
read mode, not text read mode.

Asyncio support

The asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] module built into Python 3.4 and later can be used to write
asynchronos code in a single thread. This library supports receiving messages
asynchronosly in an event loop using the can.Notifier class.
There will still be one thread per CAN bus but the user application will execute
entirely in the event loop, allowing simpler concurrency without worrying about
threading issues. Interfaces that have a valid file descriptor will however be
supported natively without a thread.

You can also use the can.AsyncBufferedReader listener if you prefer
to write coroutine based code instead of using callbacks.

Example

Here is an example using both callback and coroutine based code:

import asyncio
import can

def print_message(msg):
 """Regular callback function. Can also be a coroutine."""
 print(msg)

async def main():
 can0 = can.Bus('vcan0', bustype='virtual', receive_own_messages=True)
 reader = can.AsyncBufferedReader()
 logger = can.Logger('logfile.asc')

 listeners = [
 print_message, # Callback function
 reader, # AsyncBufferedReader() listener
 logger # Regular Listener object
]
 # Create Notifier with an explicit loop to use for scheduling of callbacks
 loop = asyncio.get_event_loop()
 notifier = can.Notifier(can0, listeners, loop=loop)
 # Start sending first message
 can0.send(can.Message(arbitration_id=0))

 print('Bouncing 10 messages...')
 for _ in range(10):
 # Wait for next message from AsyncBufferedReader
 msg = await reader.get_message()
 # Delay response
 await asyncio.sleep(0.5)
 msg.arbitration_id += 1
 can0.send(msg)
 # Wait for last message to arrive
 await reader.get_message()
 print('Done!')

 # Clean-up
 notifier.stop()
 can0.shutdown()

Get the default event loop
loop = asyncio.get_event_loop()
Run until main coroutine finishes
loop.run_until_complete(main())
loop.close()

Broadcast Manager

The broadcast manager allows the user to setup periodic message jobs.
For example sending a particular message at a given period. The broadcast
manager supported natively by several interfaces and a software thread
based scheduler is used as a fallback.

This example shows the socketcan backend using the broadcast manager:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

	#!/usr/bin/env python
coding: utf-8

"""
This example exercises the periodic sending capabilities.

Expects a vcan0 interface:

 python3 -m examples.cyclic

"""

from __future__ import print_function

import logging
import time

import can

logging.basicConfig(level=logging.INFO)

def simple_periodic_send(bus):
 """
 Sends a message every 20ms with no explicit timeout
 Sleeps for 2 seconds then stops the task.
 """
 print("Starting to send a message every 200ms for 2s")
 msg = can.Message(arbitration_id=0x123, data=[1, 2, 3, 4, 5, 6], extended_id=False)
 task = bus.send_periodic(msg, 0.20)
 assert isinstance(task, can.CyclicSendTaskABC)
 time.sleep(2)
 task.stop()
 print("stopped cyclic send")

def limited_periodic_send(bus):
 print("Starting to send a message every 200ms for 1s")
 msg = can.Message(arbitration_id=0x12345678, data=[0, 0, 0, 0, 0, 0], extended_id=True)
 task = bus.send_periodic(msg, 0.20, 1, store_task=False)
 if not isinstance(task, can.LimitedDurationCyclicSendTaskABC):
 print("This interface doesn't seem to support a ")
 task.stop()
 return

 time.sleep(2)
 print("Cyclic send should have stopped as duration expired")
 # Note the (finished) task will still be tracked by the Bus
 # unless we pass `store_task=False` to bus.send_periodic
 # alternatively calling stop removes the task from the bus
 #task.stop()

def test_periodic_send_with_modifying_data(bus):
 print("Starting to send a message every 200ms. Initial data is ones")
 msg = can.Message(arbitration_id=0x0cf02200, data=[1, 1, 1, 1])
 task = bus.send_periodic(msg, 0.20)
 if not isinstance(task, can.ModifiableCyclicTaskABC):
 print("This interface doesn't seem to support modification")
 task.stop()
 return
 time.sleep(2)
 print("Changing data of running task to begin with 99")
 msg.data[0] = 0x99
 task.modify_data(msg)
 time.sleep(2)

 task.stop()
 print("stopped cyclic send")
 print("Changing data of stopped task to single ff byte")
 msg.data = bytearray([0xff])
 msg.dlc = 1
 task.modify_data(msg)
 time.sleep(1)
 print("starting again")
 task.start()
 time.sleep(1)
 task.stop()
 print("done")

Will have to consider how to expose items like this. The socketcan
interfaces will continue to support it... but the top level api won't.
def test_dual_rate_periodic_send():
"""Send a message 10 times at 1ms intervals, then continue to send every 500ms"""
msg = can.Message(arbitration_id=0x123, data=[0, 1, 2, 3, 4, 5])
print("Creating cyclic task to send message 10 times at 1ms, then every 500ms")
task = can.interface.MultiRateCyclicSendTask('vcan0', msg, 10, 0.001, 0.50)
time.sleep(2)
#
print("Changing data[0] = 0x42")
msg.data[0] = 0x42
task.modify_data(msg)
time.sleep(2)
#
task.stop()
print("stopped cyclic send")
#
time.sleep(2)
#
task.start()
print("starting again")
time.sleep(2)
task.stop()
print("done")

if __name__ == "__main__":

 reset_msg = can.Message(arbitration_id=0x00, data=[0, 0, 0, 0, 0, 0], extended_id=False)

 for interface, channel in [
 ('socketcan', 'vcan0'),
 #('ixxat', 0)
]:
 print("Carrying out cyclic tests with {} interface".format(interface))

 bus = can.Bus(interface=interface, channel=channel, bitrate=500000)
 bus.send(reset_msg)

 simple_periodic_send(bus)

 bus.send(reset_msg)

 limited_periodic_send(bus)

 test_periodic_send_with_modifying_data(bus)

 #print("Carrying out multirate cyclic test for {} interface".format(interface))
 #can.rc['interface'] = interface
 #test_dual_rate_periodic_send()

 bus.shutdown()

 time.sleep(2)

Message Sending Tasks

The class based api for the broadcast manager uses a series of
mixin classes [https://www.ianlewis.org/en/mixins-and-python].
All mixins inherit from CyclicSendTaskABC
which inherits from CyclicTask.

	
class can.broadcastmanager.CyclicTask

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract Base for all cyclic tasks.

	
stop()

	Cancel this periodic task.

	Raises

	can.CanError – If stop is called on an already stopped task.

	
class can.broadcastmanager.CyclicSendTaskABC(message, period)

	Bases: can.broadcastmanager.CyclicTask

Message send task with defined period

	Parameters

	
	message (can.Message) – The message to be sent periodically.

	period (float [https://docs.python.org/3/library/functions.html#float]) – The rate in seconds at which to send the message.

	
class can.broadcastmanager.LimitedDurationCyclicSendTaskABC(message, period, duration)

	Bases: can.broadcastmanager.CyclicSendTaskABC

Message send task with a defined duration and period.

	Parameters

	
	message (can.Message) – The message to be sent periodically.

	period (float [https://docs.python.org/3/library/functions.html#float]) – The rate in seconds at which to send the message.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – The duration to keep sending this message at given rate.

	
class can.broadcastmanager.MultiRateCyclicSendTaskABC(channel, message, count, initial_period, subsequent_period)

	Bases: can.broadcastmanager.CyclicSendTaskABC

Exposes more of the full power of the TX_SETUP opcode.

Transmits a message count times at initial_period then continues to
transmit message at subsequent_period.

	Parameters

	
	channel (can.interface.Bus) –

	message (can.Message) –

	count (int [https://docs.python.org/3/library/functions.html#int]) –

	initial_period (float [https://docs.python.org/3/library/functions.html#float]) –

	subsequent_period (float [https://docs.python.org/3/library/functions.html#float]) –

	
class can.ModifiableCyclicTaskABC(message, period)

	Bases: can.broadcastmanager.CyclicSendTaskABC

Adds support for modifying a periodic message

	Parameters

	
	message (can.Message) – The message to be sent periodically.

	period (float [https://docs.python.org/3/library/functions.html#float]) – The rate in seconds at which to send the message.

	
modify_data(message)

	Update the contents of this periodically sent message without altering
the timing.

	Parameters

	message (can.Message) – The message with the new can.Message.data.
Note: The arbitration ID cannot be changed.

	
class can.RestartableCyclicTaskABC(message, period)

	Bases: can.broadcastmanager.CyclicSendTaskABC

Adds support for restarting a stopped cyclic task

	Parameters

	
	message (can.Message) – The message to be sent periodically.

	period (float [https://docs.python.org/3/library/functions.html#float]) – The rate in seconds at which to send the message.

	
start()

	Restart a stopped periodic task.

Functional API

Warning

The functional API in can.broadcastmanager.send_periodic() is now deprecated
and will be removed in version 4.0.
Use the object oriented API via can.BusABC.send_periodic() instead.

	
can.broadcastmanager.send_periodic(bus, message, period, *args, **kwargs)

	Send a Message every period seconds on the given bus.

	Parameters

	
	bus (can.BusABC) – A CAN bus which supports sending.

	message (can.Message) – Message to send periodically.

	period (float [https://docs.python.org/3/library/functions.html#float]) – The minimum time between sending messages.

	Returns

	A started task instance

CAN Interface Modules

python-can hides the low-level, device-specific interfaces to controller
area network adapters in interface dependant modules. However as each hardware
device is different, you should carefully go through your interface’s
documentation.

The available interfaces are:

	SocketCAN

	Kvaser’s CANLIB

	CAN over Serial

	CAN over Serial / SLCAN

	IXXAT Virtual CAN Interface

	PCAN Basic API

	USB2CAN Interface

	NI-CAN

	isCAN

	NEOVI Interface

	Vector

	Virtual

Additional interfaces can be added via a plugin interface. An external package
can register a new interface by using the can.interface entry point in its setup.py.

The format of the entry point is interface_name=module:classname where
classname is a concrete can.BusABC implementation.

entry_points={
 'can.interface': [
 "interface_name=module:classname",
]
},

The Interface Names are listed in Configuration.

SocketCAN

The full documentation for socketcan can be found in the kernel docs at
networking/can.txt [https://www.kernel.org/doc/Documentation/networking/can.txt].

Note

Versions before 2.2 had two different implementations named
socketcan_ctypes and socketcan_native. These are now
deprecated and the aliases to socketcan will be removed in
version 4.0. 3.x releases raise a DeprecationWarning.

Socketcan Quickstart

The CAN network driver provides a generic
interface to setup, configure and monitor CAN devices. To configure
bit-timing parameters use the program ip.

The virtual CAN driver (vcan)

The virtual CAN interfaces allow the transmission and reception of CAN
frames without real CAN controller hardware. Virtual CAN network devices
are usually named ‘vcanX’, like vcan0 vcan1 vcan2.

To create a virtual can interface using socketcan run the following:

sudo modprobe vcan
Create a vcan network interface with a specific name
sudo ip link add dev vcan0 type vcan
sudo ip link set vcan0 up

Real Device

vcan should be substituted for can and vcan0 should be
substituted for can0 if you are using real hardware. Setting the
bitrate can also be done at the same time, for example to enable an
existing can0 interface with a bitrate of 1MB:

sudo ip link set can0 up type can bitrate 1000000

PCAN

Kernels >= 3.4 supports the PCAN adapters natively via SocketCAN, so there is no need to install any drivers. The CAN interface can be brought like so:

sudo modprobe peak_usb
sudo modprobe peak_pci
sudo ip link set can0 up type can bitrate 500000

Send Test Message

The can-utils [https://github.com/linux-can/can-utils] library for linux
includes a script cansend which is useful to send known payloads. For
example to send a message on vcan0:

cansend vcan0 123#DEADBEEF

CAN Errors

A device may enter the “bus-off” state if too many errors occurred on
the CAN bus. Then no more messages are received or sent. An automatic
bus-off recovery can be enabled by setting the “restart-ms” to a
non-zero value, e.g.:

sudo ip link set canX type can restart-ms 100

Alternatively, the application may realize the “bus-off” condition by
monitoring CAN error frames and do a restart when appropriate with the
command:

ip link set canX type can restart

Note that a restart will also create a CAN error frame.

List network interfaces

To reveal the newly created can0 or a vcan0 interface:

ifconfig

Display CAN statistics

ip -details -statistics link show vcan0

Network Interface Removal

To remove the network interface:

sudo ip link del vcan0

Wireshark

Wireshark supports socketcan and can be used to debug python-can
messages. Fire it up and watch your new interface.

To spam a bus:

import time
import can

bustype = 'socketcan'
channel = 'vcan0'

def producer(id):
 """:param id: Spam the bus with messages including the data id."""
 bus = can.interface.Bus(channel=channel, bustype=bustype)
 for i in range(10):
 msg = can.Message(arbitration_id=0xc0ffee, data=[id, i, 0, 1, 3, 1, 4, 1], extended_id=False)
 bus.send(msg)
 # Issue #3: Need to keep running to ensure the writing threads stay alive. ?
 time.sleep(1)

producer(10)

With debugging turned right up this looks something like this:

[image: ../_images/wireshark.png]
The process to follow bus traffic is even easier:

for message in Bus(can_interface):
 print(message)

Reading and Timeouts

Reading a single CAN message off of the bus is simple with the bus.recv()
function:

import can

can_interface = 'vcan0'
bus = can.interface.Bus(can_interface, bustype='socketcan')
message = bus.recv()

By default, this performs a blocking read, which means bus.recv() won’t
return until a CAN message shows up on the socket. You can optionally perform a
blocking read with a timeout like this:

message = bus.recv(1.0) # Timeout in seconds.

if message is None:
 print('Timeout occurred, no message.')

If you set the timeout to 0.0, the read will be executed as non-blocking,
which means bus.recv(0.0) will return immediately, either with a Message
object or None, depending on whether data was available on the socket.

Filtering

The implementation features efficient filtering of can_id’s. That filtering
occurs in the kernel and is much much more efficient than filtering messages
in Python.

Broadcast Manager

The socketcan interface implements thin wrappers to the linux broadcast manager
socket api. This allows the cyclic transmission of CAN messages at given intervals.
The overhead for periodic message sending is extremely low as all the heavy lifting occurs
within the linux kernel.

send_periodic()

An example that uses the send_periodic is included in python-can/examples/cyclic.py

The object returned can be used to halt, alter or cancel the periodic message task.

	
class can.interfaces.socketcan.CyclicSendTask(bcm_socket, message, period, duration=None)

	Bases: can.broadcastmanager.LimitedDurationCyclicSendTaskABC, can.broadcastmanager.ModifiableCyclicTaskABC, can.broadcastmanager.RestartableCyclicTaskABC

A socketcan cyclic send task supports:

	setting of a task duration

	modifying the data

	stopping then subsequent restarting of the task

	Parameters

	
	bcm_socket – An open bcm socket on the desired CAN channel.

	message (can.Message) – The message to be sent periodically.

	period (float [https://docs.python.org/3/library/functions.html#float]) – The rate in seconds at which to send the message.

	duration (float [https://docs.python.org/3/library/functions.html#float]) – Approximate duration in seconds to send the message.

	
modify_data(message)

	Update the contents of this periodically sent message.

Note the Message must have the same arbitration_id
like the first message.

	
start()

	Restart a stopped periodic task.

	
stop()

	Send a TX_DELETE message to cancel this task.

This will delete the entry for the transmission of the CAN-message
with the specified can_id CAN identifier. The message length for the command
TX_DELETE is {[bcm_msg_head]} (only the header).

Bus

	
class can.interfaces.socketcan.SocketcanBus(channel='', receive_own_messages=False, fd=False, **kwargs)

	Bases: can.bus.BusABC

Implements can.BusABC._detect_available_configs().

	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The can interface name with which to create this bus. An example channel
would be ‘vcan0’ or ‘can0’.
An empty string ‘’ will receive messages from all channels.
In that case any sent messages must be explicitly addressed to a
channel using can.Message.channel.

	receive_own_messages (bool [https://docs.python.org/3/library/functions.html#bool]) – If transmitted messages should also be received by this bus.

	fd (bool [https://docs.python.org/3/library/functions.html#bool]) – If CAN-FD frames should be supported.

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See can.BusABC.set_filters().

	
recv(timeout=None)

	Block waiting for a message from the Bus.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – seconds to wait for a message or None to wait indefinitely

	Return type

	can.Message or None [https://docs.python.org/3/library/constants.html#None]

	Returns

	None on timeout or a can.Message object.

	Raises

	can.CanError – if an error occurred while reading

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Wait up to this many seconds for the transmit queue to be ready.
If not given, the call may fail immediately.

	Raises

	can.CanError – if the message could not be written.

	
shutdown()

	Stops all active periodic tasks and closes the socket.

Kvaser’s CANLIB

Kvaser [http://www.kvaser.com]’s CANLib SDK for Windows (also available on
Linux).

Bus

	
class can.interfaces.kvaser.canlib.KvaserBus(channel, can_filters=None, **config)

	Bases: can.bus.BusABC

The CAN Bus implemented for the Kvaser interface.

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int]) – The Channel id to create this bus with.

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See can.BusABC.set_filters().

Backend Configuration

	Parameters

	
	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Bitrate of channel in bit/s

	accept_virtual (bool [https://docs.python.org/3/library/functions.html#bool]) – If virtual channels should be accepted.

	tseg1 (int [https://docs.python.org/3/library/functions.html#int]) – Time segment 1, that is, the number of quanta from (but not including)
the Sync Segment to the sampling point.
If this parameter is not given, the Kvaser driver will try to choose
all bit timing parameters from a set of defaults.

	tseg2 (int [https://docs.python.org/3/library/functions.html#int]) – Time segment 2, that is, the number of quanta from the sampling
point to the end of the bit.

	sjw (int [https://docs.python.org/3/library/functions.html#int]) – The Synchronization Jump Width. Decides the maximum number of time quanta
that the controller can resynchronize every bit.

	no_samp (int [https://docs.python.org/3/library/functions.html#int]) – Either 1 or 3. Some CAN controllers can also sample each bit three times.
In this case, the bit will be sampled three quanta in a row,
with the last sample being taken in the edge between TSEG1 and TSEG2.
Three samples should only be used for relatively slow baudrates.

	driver_mode (bool [https://docs.python.org/3/library/functions.html#bool]) – Silent or normal.

	single_handle (bool [https://docs.python.org/3/library/functions.html#bool]) – Use one Kvaser CANLIB bus handle for both reading and writing.
This can be set if reading and/or writing is done from one thread.

	receive_own_messages (bool [https://docs.python.org/3/library/functions.html#bool]) – If messages transmitted should also be received back.
Only works if single_handle is also False.
If you want to receive messages from other applications on the same
computer, set this to True or set single_handle to True.

	fd (bool [https://docs.python.org/3/library/functions.html#bool]) – If CAN-FD frames should be supported.

	data_bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Which bitrate to use for data phase in CAN FD.
Defaults to arbitration bitrate.

	
flash(flash=True)

	Turn on or off flashing of the device’s LED for physical
identification purposes.

	
flush_tx_buffer()

	Wipeout the transmit buffer on the Kvaser.

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

Internals

The Kvaser Bus object with a physical CAN Bus can be operated in two
modes; single_handle mode with one shared bus handle used for both reading and
writing to the CAN bus, or with two separate bus handles.
Two separate handles are needed if receiving and sending messages are done in
different threads (see Kvaser documentation [http://www.kvaser.com/canlib-webhelp/page_user_guide_threads_applications.html]).

Warning

Any objects inheriting from Bus should not directly
use the interface handle(/s).

Message filtering

The Kvaser driver and hardware only supports setting one filter per handle.
If one filter is requested, this is will be handled by the Kvaser driver.
If more than one filter is needed, these will be handled in Python code
in the recv method. If a message does not match any of the filters,
recv() will return None.

CAN over Serial

A text based interface. For example use over serial ports like
/dev/ttyS1 or /dev/ttyUSB0 on Linux machines or COM1 on Windows.
Remote ports can be also used via a special URL. Both raw TCP sockets as
also RFC2217 ports are supported: socket://192.168.254.254:5000 or
rfc2217://192.168.254.254:5000. In addition a virtual loopback can be
used via loop:// URL.
The interface is a simple implementation that has been used for
recording CAN traces.

Note

The properties extended_id, is_remote_frame and is_error_frame
from the class:~can.Message are not in use. This interface will not
send or receive flags for this properties.

Bus

	
class can.interfaces.serial.serial_can.SerialBus(channel, baudrate=115200, timeout=0.1, rtscts=False, *args, **kwargs)

	Bases: can.bus.BusABC

Enable basic can communication over a serial device.

Note

See can.interfaces.serial.SerialBus._recv_internal()
for some special semantics.

	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The serial device to open. For example “/dev/ttyS1” or
“/dev/ttyUSB0” on Linux or “COM1” on Windows systems.

	baudrate (int [https://docs.python.org/3/library/functions.html#int]) – Baud rate of the serial device in bit/s (default 115200).

Warning

Some serial port implementations don’t care about the baudrate.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Timeout for the serial device in seconds (default 0.1).

	rtscts (bool [https://docs.python.org/3/library/functions.html#bool]) – turn hardware handshake (RTS/CTS) on and off

	
send(msg, timeout=None)

	Send a message over the serial device.

	Parameters

	
	msg (can.Message) – Message to send.

Note

Flags like extended_id, is_remote_frame and
is_error_frame will be ignored.

Note

If the timestamp is a float value it will be converted
to an integer.

	timeout – This parameter will be ignored. The timeout value of the channel is
used instead.

	
shutdown()

	Close the serial interface.

Internals

The frames that will be sent and received over the serial interface consist of
six parts. The start and the stop byte for the frame, the timestamp, DLC,
arbitration ID and the payload. The payload has a variable length of between
0 and 8 bytes, the other parts are fixed. Both, the timestamp and the
arbitration ID will be interpreted as 4 byte unsigned integers. The DLC is
also an unsigned integer with a length of 1 byte.

Serial frame format

	
	Start of frame

	Timestamp

	DLC

	Arbitration ID

	Payload

	End of frame

	Length (Byte)

	1

	4

	1

	4

	0 - 8

	1

	Data type

	Byte

	Unsigned 4 byte integer

	Unsigned 1 byte integer

	Unsigned 4 byte integer

	Byte

	Byte

	Byte order

	-

	Little-Endian

	Little-Endian

	Little-Endian

	-

	-

	Description

	Must be 0xAA

	Usually s, ms or µs since start of the device

	Length in byte of the payload

	-

	-

	Must be 0xBB

Examples of serial frames

CAN message with 8 byte payload

	CAN message

	Arbitration ID

	Payload

	1

	0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

	Serial frame

	Start of frame

	Timestamp

	DLC

	Arbitration ID

	Payload

	End of frame

	0xAA

	0x66 0x73 0x00 0x00

	0x08

	0x01 0x00 0x00 0x00

	0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

	0xBB

CAN message with 1 byte payload

	CAN message

	Arbitration ID

	Payload

	1

	0x11

	Serial frame

	Start of frame

	Timestamp

	DLC

	Arbitration ID

	Payload

	End of frame

	0xAA

	0x66 0x73 0x00 0x00

	0x01

	0x01 0x00 0x00 0x00

	0x11

	0xBB

CAN message with 0 byte payload

	CAN message

	Arbitration ID

	Payload

	1

	None

	Serial frame

	Start of frame

	Timestamp

	DLC

	Arbitration ID

	End of frame

	0xAA

	0x66 0x73 0x00 0x00

	0x00

	0x01 0x00 0x00 0x00

	0xBBS

CAN over Serial / SLCAN

A text based interface: compatible to slcan-interfaces (slcan ASCII protocol) should also support LAWICEL direct.
These interfaces can also be used with socketcan and slcand with Linux.
This driver directly uses either the local or remote serial port, it makes slcan-compatible interfaces usable with Windows also.
Remote serial ports will be specified via special URL. Both raw TCP sockets as also RFC2217 ports are supported.

Usage: use port or URL[@baurate] to open the device.
For example use /dev/ttyUSB0@115200 or COM4@9600 for local serial ports and
socket://192.168.254.254:5000 or rfc2217://192.168.254.254:5000 for remote ports.

Supported devices

Todo

Document this.

Bus

	
class can.interfaces.slcan.slcanBus(channel, ttyBaudrate=115200, bitrate=None, rtscts=False, **kwargs)

	Bases: can.bus.BusABC

slcan interface

	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – port of underlying serial or usb device (e.g. /dev/ttyUSB0, COM8, …)
Must not be empty.

	ttyBaudrate (int [https://docs.python.org/3/library/functions.html#int]) – baudrate of underlying serial or usb device

	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Bitrate in bit/s

	poll_interval (float [https://docs.python.org/3/library/functions.html#float]) – Poll interval in seconds when reading messages

	rtscts (bool [https://docs.python.org/3/library/functions.html#bool]) – turn hardware handshake (RTS/CTS) on and off

	
send(msg, timeout=0)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

Internals

Todo

Document the internals of slcan interface.

IXXAT Virtual CAN Interface

Interface to IXXAT [http://www.ixxat.com/] Virtual CAN Interface V3 SDK. Works on Windows.

The Linux ECI SDK is currently unsupported, however on Linux some devices are
supported with SocketCAN.

The send_periodic() method is supported
natively through the on-board cyclic transmit list.
Modifying cyclic messages is not possible. You will need to stop it, and then
start a new periodic message.

Bus

Configuration file

The simplest configuration file would be:

[default]
interface = ixxat
channel = 0

Python-can will search for the first IXXAT device available and open the first channel.
interface and channel parameters are interpreted by frontend can.interfaces.interface
module, while the following parameters are optional and are interpreted by IXXAT implementation.

	bitrate (default 500000) Channel bitrate

	UniqueHardwareId (default first device) Unique hardware ID of the IXXAT device

	rxFifoSize (default 16) Number of RX mailboxes

	txFifoSize (default 16) Number of TX mailboxes

	extended (default False) Allow usage of extended IDs

Internals

The IXXAT BusABC object is a farly straightforward interface
to the IXXAT VCI library. It can open a specific device ID or use the
first one found.

The frame exchange do not involve threads in the background but is
explicitly instantiated by the caller.

	recv() is a blocking call with optional timeout.

	send() is not blocking but may raise a VCIError if the TX FIFO is full

RX and TX FIFO sizes are configurable with rxFifoSize and txFifoSize
options, defaulting at 16 for both.

The CAN filters act as a “whitelist” in IXXAT implementation, that is if you
supply a non-empty filter list you must explicitly state EVERY frame you want
to receive (including RTR field).
The can_id/mask must be specified according to IXXAT behaviour, that is
bit 0 of can_id/mask parameters represents the RTR field in CAN frame. See IXXAT
VCI documentation, section “Message filters” for more info.

PCAN Basic API

Interface to Peak-System [https://www.peak-system.com/?&L=1/]’s PCAN-Basic API.

Windows driver: https://www.peak-system.com/Downloads.76.0.html?&L=1

Linux driver: https://www.peak-system.com/fileadmin/media/linux/index.htm#download and https://www.peak-system.com/Downloads.76.0.html?&L=1 (PCAN-Basic API (Linux))

Mac driver: http://www.mac-can.com

Configuration

Here is an example configuration file for using PCAN-USB [https://www.peak-system.com/PCAN-USB.199.0.html?&L=1]:

[default]
interface = pcan
channel = PCAN_USBBUS1
state = can.bus.BusState.PASSIVE
bitrate = 500000

channel: (default PCAN_USBBUS1) CAN interface name

state: (default can.bus.BusState.ACTIVE) BusState of the channel

bitrate: (default 500000) Channel bitrate

Valid channel values:

PCAN_ISABUSx
PCAN_DNGBUSx
PCAN_PCIBUSx
PCAN_USBBUSx
PCAN_PCCBUSx
PCAN_LANBUSx

Where x should be replaced with the desired channel number starting at 1.

Linux installation

Kernels >= 3.4 supports the PCAN adapters natively via SocketCAN, refer to: PCAN.

Bus

	
class can.interfaces.pcan.PcanBus(channel='PCAN_USBBUS1', state=<property object>, bitrate=500000, *args, **kwargs)

	Bases: can.bus.BusABC

A PCAN USB interface to CAN.

On top of the usual Bus methods provided,
the PCAN interface includes the flash()
and status() methods.

	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The can interface name. An example would be ‘PCAN_USBBUS1’
Default is ‘PCAN_USBBUS1’

	state (can.bus.BusState) – BusState of the channel.
Default is ACTIVE

	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Bitrate of channel in bit/s.
Default is 500 kbit/s.

	
flash(flash)

	Turn on or off flashing of the device’s LED for physical
identification purposes.

	
reset()

	Command the PCAN driver to reset the bus after an error.

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

	
state

	Return the current state of the hardware
:return: ACTIVE, PASSIVE or ERROR
:rtype: NamedTuple

	
status()

	Query the PCAN bus status.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Returns

	The status code. See values in basic.PCAN_ERROR_

	
status_is_ok()

	Convenience method to check that the bus status is OK

USB2CAN Interface

OVERVIEW

The USB2CAN [http://www.8devices.com/products/usb2can] is a cheap CAN interface based on an ARM7 chip (STR750FV2).
There is support for this device on Linux through the SocketCAN interface and for Windows using this
usb2can interface.

WINDOWS SUPPORT

Support though windows is achieved through a DLL very similar to the way the PCAN functions. The API is called CANAL
(CAN Abstraction Layer) which is a separate project designed to be used with VSCP which is a socket like messaging system
that is not only cross platform but also supports other types of devices. This device can be used through one of three ways
1)Through python-can
2)CANAL API either using the DLL and C/C++ or through the python wrapper that has been added to this project
3)VSCP
Using python-can is strongly suggested as with little extra work the same interface can be used on both Windows and Linux.

WINDOWS INSTALL

	To install on Windows download the USB2CAN Windows driver. It is compatible with XP, Vista, Win7, Win8/8.1. (Written against driver version v1.0.2.1)

	Install the appropriate version of pywin32 [https://sourceforge.net/projects/pywin32/] (win32com)

	
	Download the USB2CAN CANAL DLL from the USB2CAN website. Place this in either the same directory you are running usb2can.py from or your DLL folder in your python install.

	(Written against CANAL DLL version v1.0.6)

Interface Layout

	
	usb2canabstractionlayer.py

	This file is only a wrapper for the CANAL API that the interface expects. There are also a couple of constants here to try and make dealing with the
bitwise operations for flag setting a little easier. Other than that this is only the CANAL API. If a programmer wanted to work with the API directly this is
the file that allows you to do this. The CANAL project does not provide this wrapper and normally must be accessed with C.

	
	usb2canInterface.py

	This file provides the translation to and from the python-can library to the CANAL API. This is where all the logic is and setup code is. Most issues if they are found
will be either found here or within the DLL that is provided

	
	serial_selector.py

	See the section below for the reason for adding this as it is a little odd. What program does is if a serial number is not provided to the usb2canInterface file this
program does WMI (Windows Management Instrumentation) calls to try and figure out what device to connect to. It then returns the serial number of the device.
Currently it is not really smart enough to figure out what to do if there are multiple devices. This needs to be changed if people are using more than one interface.

Interface Specific Items

There are a few things that are kinda strange about this device and are not overly obvious about the code or things that are not done being implemented in the DLL.

	
	You need the Serial Number to connect to the device under Windows. This is part of the “setup string” that configures the device. There are a few options for how to get this.

	
	Use usb2canWin.py to find the serial number

	Look on the device and enter it either through a prompt/barcode scanner/hardcode it.(Not recommended)

	Reprogram the device serial number to something and do that for all the devices you own. (Really Not Recommended, can no longer use multiple devices on one computer)

	In usb2canabstractionlayer.py there is a structure called CanalMsg which has a unsigned byte array of size 8. In the usb2canInterface file it passes in an unsigned byte array of
size 8 also which if you pass less than 8 bytes in it stuffs it with extra zeros. So if the data “01020304” is sent the message would look like “0102030400000000”.
There is also a part of this structure called sizeData which is the actual length of the data that was sent not the stuffed message (in this case would be 4).
What then happens is although a message of size 8 is sent to the device only the length of information so the first 4 bytes of information would be sent. This
is done because the DLL expects a length of 8 and nothing else. So to make it compatible that has to be sent through the wrapper. If usb2canInterface sent an
array of length 4 with sizeData of 4 as well the array would throw an incompatible data type error. There is a Wireshark file posted in Issue #36 that demonstrates
that the bus is only sending the data and not the extra zeros.

	The masking features have not been implemented currently in the CANAL interface in the version currently on the USB2CAN website.

Warning

Currently message filtering is not implemented. Contributions are most welcome!

Bus

	
class can.interfaces.usb2can.Usb2canBus(channel, *args, **kwargs)

	Bases: can.bus.BusABC

Interface to a USB2CAN Bus.

	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The device’s serial number. If not provided, Windows Management Instrumentation
will be used to identify the first such device. The kwarg serial may also be
used.

	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Bitrate of channel in bit/s. Values will be limited to a maximum of 1000 Kb/s.
Default is 500 Kbs

	flags (int [https://docs.python.org/3/library/functions.html#int]) – Flags to directly pass to open function of the usb2can abstraction layer.

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
shutdown()

	Shut down the device safely

Internals

	
class can.interfaces.usb2can.Usb2CanAbstractionLayer

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A low level wrapper around the usb2can library.

Documentation: http://www.8devices.com/media/products/usb2can/downloads/CANAL_API.pdf

	
blocking_receive(handle, msg, timeout)

	

	
blocking_send(handle, msg, timeout)

	

	
close(handle)

	

	
get_library_version()

	

	
get_statistics(handle, CanalStatistics)

	

	
get_status(handle, CanalStatus)

	

	
get_vendor_string()

	

	
get_version()

	

	
open(pConfigureStr, flags)

	

	
receive(handle, msg)

	

	
send(handle, msg)

	

NI-CAN

This interface adds support for CAN controllers by National Instruments [http://www.ni.com/can/].

Warning

NI-CAN only seems to support 32-bit architectures so if the driver can’t
be loaded on a 64-bit Python, try using a 32-bit version instead.

Warning

CAN filtering has not been tested throughly and may not work as expected.

Bus

	
class can.interfaces.nican.NicanBus(channel, can_filters=None, bitrate=None, log_errors=True, **kwargs)

	Bases: can.bus.BusABC

The CAN Bus implemented for the NI-CAN interface.

Warning

This interface does implement efficient filtering of messages, but
the filters have to be set in __init__()
using the can_filters parameter. Using set_filters()
does not work.

	Parameters

	
	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the object to open (e.g. ‘CAN0’)

	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Bitrate in bits/s

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See can.BusABC.set_filters().

	log_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, communication errors will appear as CAN messages with
is_error_frame set to True and arbitration_id will identify
the error (default True)

	Raises

	can.interfaces.nican.NicanError – If starting communication fails

	
reset()

	Resets network interface. Stops network interface, then resets the CAN
chip to clear the CAN error counters (clear error passive state).
Resetting includes clearing all entries from read and write queues.

	
send(msg, timeout=None)

	Send a message to NI-CAN.

	Parameters

	msg (can.Message) – Message to send

	Raises

	can.interfaces.nican.NicanError – If writing to transmit buffer fails.
It does not wait for message to be ACKed currently.

	
set_filters(can_filers=None)

	Unsupported. See note on NicanBus.

	
shutdown()

	Close object.

	
exception can.interfaces.nican.NicanError(function, error_code, arguments)

	Bases: can.CanError

Error from NI-CAN driver.

	
arguments = None

	Arguments passed to function

	
error_code = None

	Status code

	
function = None

	Function that failed

isCAN

Interface for isCAN from Thorsis Technologies GmbH [https://www.thorsis.com/en/industrial-automation/usb-interfaces/can/iscan-usb-interface/], former ifak system GmbH.

Bus

	
class can.interfaces.iscan.IscanBus(channel, bitrate=500000, poll_interval=0.01, **kwargs)

	Bases: can.bus.BusABC

isCAN interface

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int]) – Device number

	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Bitrate in bits/s

	poll_interval (float [https://docs.python.org/3/library/functions.html#float]) – Poll interval in seconds when reading messages

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

	
exception can.interfaces.iscan.IscanError(function, error_code, arguments)

	Bases: can.CanError

NEOVI Interface

Warning

This ICS NeoVI documentation is a work in progress. Feedback and revisions
are most welcome!

Interface to Intrepid Control Systems [https://www.intrepidcs.com/] neoVI
API range of devices via python-ics [https://pypi.python.org/pypi/python-ics/]
wrapper on Windows.

Installation

This neovi interface requires the installation of the ICS neoVI DLL and python-ics
package.

	
	Download and install the Intrepid Product Drivers

	Intrepid Product Drivers [https://cdn.intrepidcs.net/updates/files/ICSDrivers.zip]

	
	Install python-ics

	pip install python-ics

Configuration

An example can.ini file for windows 7:

[default]
interface = neovi
channel = 1

Bus

	
class can.interfaces.ics_neovi.NeoViBus(channel, can_filters=None, **config)

	Bases: can.bus.BusABC

The CAN Bus implemented for the python_ics interface
https://github.com/intrepidcs/python_ics

	Parameters

	
	channel (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list](int [https://docs.python.org/3/library/functions.html#int]) or list [https://docs.python.org/3/library/stdtypes.html#list](str [https://docs.python.org/3/library/stdtypes.html#str])) – The channel ids to create this bus with.
Can also be a single integer, netid name or a comma separated
string.

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See can.BusABC.set_filters() for details.

	use_system_timestamp (bool [https://docs.python.org/3/library/functions.html#bool]) – Use system timestamp for can messages instead of the hardware time
stamp

	serial (str [https://docs.python.org/3/library/stdtypes.html#str]) – Serial to connect (optional, will use the first found if not
supplied)

	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Channel bitrate in bit/s. (optional, will enable the auto bitrate
feature if not supplied)

	fd (bool [https://docs.python.org/3/library/functions.html#bool]) – If CAN-FD frames should be supported.

	data_bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Which bitrate to use for data phase in CAN FD.
Defaults to arbitration bitrate.

	
static get_serial_number(device)

	Decode (if needed) and return the ICS device serial string

	Parameters

	device – ics device

	Returns

	ics device serial string

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

Vector

This interface adds support for CAN controllers by Vector [https://vector.com/].

By default this library uses the channel configuration for CANalyzer.
To use a different application, open Vector Hardware Config program and create
a new application and assign the channels you may want to use.
Specify the application name as app_name='Your app name' when constructing
the bus or in a config file.

Channel should be given as a list of channels starting at 0.

Here is an example configuration file connecting to CAN 1 and CAN 2 for an
application named “python-can”:

[default]
interface = vector
channel = 0, 1
app_name = python-can

If you are using Python 2.7 it is recommended to install pywin32 [https://sourceforge.net/projects/pywin32/], otherwise a
slow and CPU intensive polling will be used when waiting for new messages.

Bus

	
class can.interfaces.vector.VectorBus(channel, can_filters=None, poll_interval=0.01, receive_own_messages=False, bitrate=None, rx_queue_size=16384, app_name='CANalyzer', serial=None, fd=False, data_bitrate=None, sjwAbr=2, tseg1Abr=6, tseg2Abr=3, sjwDbr=2, tseg1Dbr=6, tseg2Dbr=3, **config)

	Bases: can.bus.BusABC

The CAN Bus implemented for the Vector interface.

	Parameters

	
	channel (list [https://docs.python.org/3/library/stdtypes.html#list]) – The channel indexes to create this bus with.
Can also be a single integer or a comma separated string.

	poll_interval (float [https://docs.python.org/3/library/functions.html#float]) – Poll interval in seconds.

	bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Bitrate in bits/s.

	rx_queue_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of messages in receive queue (power of 2).
CAN: range 16…32768
CAN-FD: range 8192…524288

	app_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of application in Hardware Config.
If set to None, the channel should be a global channel index.

	serial (int [https://docs.python.org/3/library/functions.html#int]) – Serial number of the hardware to be used.
If set, the channel parameter refers to the channels ONLY on the specified hardware.
If set, the app_name is unused.

	fd (bool [https://docs.python.org/3/library/functions.html#bool]) – If CAN-FD frames should be supported.

	data_bitrate (int [https://docs.python.org/3/library/functions.html#int]) – Which bitrate to use for data phase in CAN FD.
Defaults to arbitration bitrate.

	
flush_tx_buffer()

	Discard every message that may be queued in the output buffer(s).

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

	
exception can.interfaces.vector.VectorError(error_code, error_string, function)

	Bases: can.CanError

Virtual

The virtual interface can be used as a way to write OS and driver independent
tests.

A virtual CAN bus that can be used for automatic tests. Any Bus instances
connecting to the same channel (in the same python program) will get each
others messages.

import can

bus1 = can.interface.Bus('test', bustype='virtual')
bus2 = can.interface.Bus('test', bustype='virtual')

msg1 = can.Message(arbitration_id=0xabcde, data=[1,2,3])
bus1.send(msg1)
msg2 = bus2.recv()

assert msg1 == msg2

Scripts

The following modules are callable from python-can.

They can be called for example by python -m can.logger or can_logger.py (if installed using pip).

can.logger

Command line help, called with --help:

$ python -m can.logger -h
usage: python -m can.logger [-h] [-f LOG_FILE] [-v] [-c CHANNEL]
 [-i {serial,pcan,vector,virtual,nican,neovi,socketcan_native,socketcan,usb2can,ixxat,socketcan_ctypes,iscan,slcan,kvaser}]
 [--filter ...] [-b BITRATE] [--active | --passive]

Log CAN traffic, printing messages to stdout or to a given file.

optional arguments:
 -h, --help show this help message and exit
 -f LOG_FILE, --file_name LOG_FILE
 Path and base log filename, for supported types see
 can.Logger.
 -v How much information do you want to see at the command
 line? You can add several of these e.g., -vv is DEBUG
 -c CHANNEL, --channel CHANNEL
 Most backend interfaces require some sort of channel.
 For example with the serial interface the channel
 might be a rfcomm device: "/dev/rfcomm0" With the
 socketcan interfaces valid channel examples include:
 "can0", "vcan0"
 -i {serial,pcan,vector,virtual,nican,neovi,socketcan_native,socketcan,usb2can,ixxat,socketcan_ctypes,iscan,slcan,kvaser}, --interface {serial,pcan,vector,virtual,nican,neovi,socketcan_native,socketcan,usb2can,ixxat,socketcan_ctypes,iscan,slcan,kvaser}
 Specify the backend CAN interface to use. If left
 blank, fall back to reading from configuration files.
 --filter ... Comma separated filters can be specified for the given
 CAN interface: <can_id>:<can_mask> (matches when
 <received_can_id> & mask == can_id & mask)
 <can_id>~<can_mask> (matches when <received_can_id> &
 mask != can_id & mask)
 -b BITRATE, --bitrate BITRATE
 Bitrate to use for the CAN bus.
 --active Start the bus as active, this is applied the default.
 --passive Start the bus as passive.

can.player

$ python -m can.player -h
usage: python -m can.player [-h] [-f LOG_FILE] [-v] [-c CHANNEL]
 [-i {serial,socketcan,virtual,neovi,socketcan_native,usb2can,vector,nican,pcan,iscan,ixxat,slcan,socketcan_ctypes,kvaser}]
 [-b BITRATE] [--ignore-timestamps] [-g GAP]
 [-s SKIP]
 input-file

Replay CAN traffic.

positional arguments:
 input-file The file to replay. For supported types see
 can.LogReader.

optional arguments:
 -h, --help show this help message and exit
 -f LOG_FILE, --file_name LOG_FILE
 Path and base log filename, for supported types see
 can.LogReader.
 -v Also print can frames to stdout. You can add several
 of these to enable debugging
 -c CHANNEL, --channel CHANNEL
 Most backend interfaces require some sort of channel.
 For example with the serial interface the channel
 might be a rfcomm device: "/dev/rfcomm0" With the
 socketcan interfaces valid channel examples include:
 "can0", "vcan0"
 -i {serial,socketcan,virtual,neovi,socketcan_native,usb2can,vector,nican,pcan,iscan,ixxat,slcan,socketcan_ctypes,kvaser}, --interface {serial,socketcan,virtual,neovi,socketcan_native,usb2can,vector,nican,pcan,iscan,ixxat,slcan,socketcan_ctypes,kvaser}
 Specify the backend CAN interface to use. If left
 blank, fall back to reading from configuration files.
 -b BITRATE, --bitrate BITRATE
 Bitrate to use for the CAN bus.
 --ignore-timestamps Ignore timestamps (send all frames immediately with
 minimum gap between frames)
 -g GAP, --gap GAP <s> minimum time between replayed frames
 -s SKIP, --skip SKIP <s> skip gaps greater than 's' seconds

can.viewer

A screenshot of the application can be seen below:

[image: _images/viewer.png]
The first column is the number of times a frame with the particular ID that has been received, next is the timestamp of the frame relative to the first received message. The third column is the time between the current frame relative to the previous one. Next is the length of the frame, the data and then the decoded data converted according to the -d argument. The top red row indicates an error frame.

Command line arguments

By default the can.viewer uses the SocketCAN interface. All interfaces are supported and can be specified using the -i argument or configured following Configuration.

The full usage page can be seen below:

$ python -m can.viewer -h
Usage: python -m can.viewer [-h] [--version] [-b BITRATE] [-c CHANNEL]
 [-d {<id>:<format>,<id>:<format>:<scaling1>:...:<scalingN>,file.txt}]
 [-f {<can_id>:<can_mask>,<can_id>~<can_mask>}]
 [-i {iscan,ixxat,kvaser,neovi,nican,pcan,serial,slcan,socketcan,socketcan_ctypes,socketcan_native,usb2can,vector,virtual}]

A simple CAN viewer terminal application written in Python

Optional arguments:
 -h, --help Show this help message and exit
 --version Show program's version number and exit
 -b, --bitrate BITRATE
 Bitrate to use for the given CAN interface
 -c, --channel CHANNEL
 Most backend interfaces require some sort of channel.
 For example with the serial interface the channel
 might be a rfcomm device: "/dev/rfcomm0" with the
 socketcan interfaces valid channel examples include:
 "can0", "vcan0". (default: use default for the
 specified interface)
 -d, --decode {<id>:<format>,<id>:<format>:<scaling1>:...:<scalingN>,file.txt}
 Specify how to convert the raw bytes into real values.
 The ID of the frame is given as the first argument and the format as the second.
 The Python struct package is used to unpack the received data
 where the format characters have the following meaning:
 < = little-endian, > = big-endian
 x = pad byte
 c = char
 ? = bool
 b = int8_t, B = uint8_t
 h = int16, H = uint16
 l = int32_t, L = uint32_t
 q = int64_t, Q = uint64_t
 f = float (32-bits), d = double (64-bits)
 Fx to convert six bytes with ID 0x100 into uint8_t, uint16 and uint32_t:
 $ python -m can.viewer -d "100:<BHL"
 Note that the IDs are always interpreted as hex values.
 An optional conversion from integers to real units can be given
 as additional arguments. In order to convert from raw integer
 values the values are multiplied with the corresponding scaling value,
 similarly the values are divided by the scaling value in order
 to convert from real units to raw integer values.
 Fx lets say the uint8_t needs no conversion, but the uint16 and the uint32_t
 needs to be divided by 10 and 100 respectively:
 $ python -m can.viewer -d "101:<BHL:1:10.0:100.0"
 Be aware that integer division is performed if the scaling value is an integer.
 Multiple arguments are separated by spaces:
 $ python -m can.viewer -d "100:<BHL" "101:<BHL:1:10.0:100.0"
 Alternatively a file containing the conversion strings separated by new lines
 can be given as input:
 $ cat file.txt
 100:<BHL
 101:<BHL:1:10.0:100.0
 $ python -m can.viewer -d file.txt
 -f, --filter {<can_id>:<can_mask>,<can_id>~<can_mask>}
 Comma separated CAN filters for the given CAN interface:
 <can_id>:<can_mask> (matches when <received_can_id> & mask == can_id & mask)
 <can_id>~<can_mask> (matches when <received_can_id> & mask != can_id & mask)
 Fx to show only frames with ID 0x100 to 0x103:
 python -m can.viewer -f 100:7FC
 Note that the ID and mask are alway interpreted as hex values
 -i, --interface {iscan,ixxat,kvaser,neovi,nican,pcan,serial,slcan,socketcan,socketcan_ctypes,socketcan_native,usb2can,vector,virtual}
 Specify the backend CAN interface to use.

Shortcuts:
 +---------+-------------------------+
 | Key | Description |
 +---------+-------------------------+
 | ESQ/q | Exit the viewer |
 | c | Clear the stored frames |
 | s | Sort the stored frames |
 | SPACE | Pause the viewer |
 | UP/DOWN | Scroll the viewer |
 +---------+-------------------------+

Developer’s Overview

Contributing

Contribute to source code, documentation, examples and report issues:
https://github.com/hardbyte/python-can

There is also a python-can [https://groups.google.com/forum/#!forum/python-can]
mailing list for development discussion.

Building & Installing

The following assumes that the commands are executed from the root of the repository:

	The project can be built and installed with python setup.py build and
python setup.py install.

	The unit tests can be run with python setup.py test. The tests can be run with python2,
python3, pypy or pypy3 to test with other python versions, if they are installed.
Maybe, you need to execute pip3 install python-can[test] (or only pip for Python 2),
if some dependencies are missing.

	The docs can be built with sphinx-build doc/ doc/_build. Appending -n to the command
makes Sphinx complain about more subtle problems.

Creating a new interface/backend

These steps are a guideline on how to add a new backend to python-can.

	Create a module (either a *.py or an entire subdirectory depending
on the complexity) inside can.interfaces

	Implement the central part of the backend: the bus class that extends
can.BusABC. See below for more info on this one!

	Register your backend bus class in can.interface.BACKENDS and
can.interfaces.VALID_INTERFACES in can.interfaces.__init__.py.

	Add docs where appropriate. At a minimum add to doc/interfaces.rst and add
a new interface specific document in doc/interface/*.

	Update doc/scripts.rst accordingly.

	Add tests in test/* where appropriate.

About the BusABC class

	Concrete implementations have to implement the following:

	
	send() to send individual messages

	_recv_internal() to receive individual messages
(see note below!)

	set the channel_info attribute to a string describing
the underlying bus and/or channel

	They might implement the following:

	
	flush_tx_buffer() to allow discarding any
messages yet to be sent

	shutdown() to override how the bus should
shut down

	_send_periodic_internal() to override the software based
periodic sending and push it down to the kernel or hardware.

	_apply_filters() to apply efficient filters
to lower level systems like the OS kernel or hardware.

	_detect_available_configs() to allow the interface
to report which configurations are currently available for new
connections.

	state() property to allow reading and/or changing
the bus state.

Note

TL;DR: Only override _recv_internal(),
never recv() directly.

Previously, concrete bus classes had to override recv()
directly instead of _recv_internal(), but that has
changed to allow the abstract base class to handle in-software message
filtering as a fallback. All internal interfaces now implement that new
behaviour. Older (custom) interfaces might still be implemented like that
and thus might not provide message filtering:

This is the entire ABC bus class with all internal methods:

	
class can.BusABC(channel, can_filters=None, **config)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The CAN Bus Abstract Base Class that serves as the basis
for all concrete interfaces.

This class may be used as an iterator over the received messages.

Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters
as it handles generic tasks like applying filters.

	Parameters

	
	channel – The can interface identifier. Expected type is backend dependent.

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See set_filters() for details.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any backend dependent configurations are passed in this dictionary

	
RECV_LOGGING_LEVEL = 9

	Log level for received messages

	
__init__(channel, can_filters=None, **config)

	Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters
as it handles generic tasks like applying filters.

	Parameters

	
	channel – The can interface identifier. Expected type is backend dependent.

	can_filters (list [https://docs.python.org/3/library/stdtypes.html#list]) – See set_filters() for details.

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any backend dependent configurations are passed in this dictionary

	
__iter__()

	Allow iteration on messages as they are received.

>>> for msg in bus:
... print(msg)

	Yields

	can.Message msg objects.

	
__metaclass__

	alias of abc.ABCMeta [https://docs.python.org/3/library/abc.html#abc.ABCMeta]

	
__str__()

	Return str(self).

	
__weakref__

	list of weak references to the object (if defined)

	
_apply_filters(filters)

	Hook for applying the filters to the underlying kernel or
hardware if supported/implemented by the interface.

	Parameters

	filters (Iterator[dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – See set_filters() for details.

	
static _detect_available_configs()

	Detect all configurations/channels that this interface could
currently connect with.

This might be quite time consuming.

May not to be implemented by every interface on every platform.

	Return type

	Iterator[dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	Returns

	an iterable of dicts, each being a configuration suitable
for usage in the interface’s bus constructor.

	
_matches_filters(msg)

	Checks whether the given message matches at least one of the
current filters. See set_filters() for details
on how the filters work.

This method should not be overridden.

	Parameters

	msg (can.Message) – the message to check if matching

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns

	whether the given message matches at least one filter

	
_recv_internal(timeout)

	Read a message from the bus and tell whether it was filtered.
This methods may be called by recv()
to read a message multiple times if the filters set by
set_filters() do not match and the call has
not yet timed out.

New implementations should always override this method instead of
recv(), to be able to take advantage of the
software based filtering provided by recv()
as a fallback. This method should never be called directly.

Note

This method is not an @abstractmethod (for now) to allow older
external implementations to continue using their existing
recv() implementation.

Note

The second return value (whether filtering was already done) may
change over time for some interfaces, like for example in the
Kvaser interface. Thus it cannot be simplified to a constant value.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – seconds to wait for a message,
see send()

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][can.Message, bool [https://docs.python.org/3/library/functions.html#bool]] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple][None [https://docs.python.org/3/library/constants.html#None], bool [https://docs.python.org/3/library/functions.html#bool]]

	Returns

	
	a message that was read or None on timeout

	a bool that is True if message filtering has already
been done and else False

	Raises

	
	can.CanError – if an error occurred while reading

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – if the bus provides it’s own recv()
implementation (legacy implementation)

	
_send_periodic_internal(msg, period, duration=None)

	Default implementation of periodic message sending using threading.

Override this method to enable a more efficient backend specific approach.

	Parameters

	
	msg (can.Message) – Message to transmit

	period (float [https://docs.python.org/3/library/functions.html#float]) – Period in seconds between each message

	duration (float [https://docs.python.org/3/library/functions.html#float]) – The duration to keep sending this message at given rate. If
no duration is provided, the task will continue indefinitely.

	Returns

	A started task instance. Note the task can be stopped (and depending on
the backend modified) by calling the stop() method.

	Return type

	can.broadcastmanager.CyclicSendTaskABC

	
channel_info = 'unknown'

	a string describing the underlying bus and/or channel

	
filters

	Modify the filters of this bus. See set_filters()
for details.

	
flush_tx_buffer()

	Discard every message that may be queued in the output buffer(s).

	
recv(timeout=None)

	Block waiting for a message from the Bus.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – seconds to wait for a message or None to wait indefinitely

	Return type

	can.Message or None [https://docs.python.org/3/library/constants.html#None]

	Returns

	None on timeout or a can.Message object.

	Raises

	can.CanError – if an error occurred while reading

	
send(msg, timeout=None)

	Transmit a message to the CAN bus.

Override this method to enable the transmit path.

	Parameters

	
	msg (can.Message) – A message object.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – If > 0, wait up to this many seconds for message to be ACK’ed or
for transmit queue to be ready depending on driver implementation.
If timeout is exceeded, an exception will be raised.
Might not be supported by all interfaces.
None blocks indefinitly.

	Raises

	can.CanError – if the message could not be sent

	
send_periodic(msg, period, duration=None, store_task=True)

	Start sending a message at a given period on this bus.

The task will be active until one of the following conditions are met:

	the (optional) duration expires

	the Bus instance goes out of scope

	the Bus instance is shutdown

	Bus.stop_all_periodic_tasks() is called

	the task’s Task.stop() method is called.

	Parameters

	
	msg (can.Message) – Message to transmit

	period (float [https://docs.python.org/3/library/functions.html#float]) – Period in seconds between each message

	duration (float [https://docs.python.org/3/library/functions.html#float]) – The duration to keep sending this message at given rate. If
no duration is provided, the task will continue indefinitely.

	store_task (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default) the task will be attached to this Bus instance.
Disable to instead manage tasks manually.

	Returns

	A started task instance. Note the task can be stopped (and depending on
the backend modified) by calling the stop() method.

	Return type

	can.broadcastmanager.CyclicSendTaskABC

Note

Note the duration before the message stops being sent may not
be exactly the same as the duration specified by the user. In
general the message will be sent at the given rate until at
least duration seconds.

Note

For extremely long running Bus instances with many short lived tasks the default
api with store_task==True may not be appropriate as the stopped tasks are
still taking up memory as they are associated with the Bus instance.

	
set_filters(filters=None)

	Apply filtering to all messages received by this Bus.

All messages that match at least one filter are returned.
If filters is None or a zero length sequence, all
messages are matched.

Calling without passing any filters will reset the applied
filters to None.

	Parameters

	filters – A iterable of dictionaries each containing a “can_id”,
a “can_mask”, and an optional “extended” key.

>>> [{"can_id": 0x11, "can_mask": 0x21, "extended": False}]

A filter matches, when
<received_can_id> & can_mask == can_id & can_mask.
If extended is set as well, it only matches messages where
<received_is_extended> == extended. Else it matches every
messages based only on the arbitration ID and mask.

	
shutdown()

	Called to carry out any interface specific cleanup required
in shutting down a bus.

	
state

	Return the current state of the hardware
:return: ACTIVE, PASSIVE or ERROR
:rtype: NamedTuple

	
stop_all_periodic_tasks(remove_tasks=True)

	Stop sending any messages that were started using bus.send_periodic

	Parameters

	remove_tasks (bool [https://docs.python.org/3/library/functions.html#bool]) – Stop tracking the stopped tasks.

Concrete instances are created by can.Bus.

Code Structure

The modules in python-can are:

	Module

	Description

	interfaces

	Contains interface dependent code.

	bus

	Contains the interface independent Bus object.

	message

	Contains the interface independent Message object.

	io

	Contains a range of file readers and writers.

	broadcastmanager

	Contains interface independent broadcast manager
code.

	CAN

	Legacy API. Deprecated.

Creating a new Release

	Release from the master branch.

	Update the library version in __init__.py using semantic versioning [http://semver.org].

	Check if any deprecations are pending.

	Run all tests and examples against available hardware.

	Update CONTRIBUTORS.txt with any new contributors.

	For larger changes update doc/history.rst.

	Sanity check that documentation has stayed inline with code.

	Create a temporary virtual environment. Run python setup.py install and python setup.py test.

	Create and upload the distribution: python setup.py sdist bdist_wheel.

	Sign the packages with gpg gpg --detach-sign -a dist/python_can-X.Y.Z-py3-none-any.whl.

	Upload with twine twine upload dist/python-can-X.Y.Z*.

	In a new virtual env check that the package can be installed with pip: pip install python-can==X.Y.Z.

	Create a new tag in the repository.

	Check the release on PyPi, Read the Docs and GitHub.

History and Roadmap

Background

Originally written at Dynamic Controls [https://dynamiccontrols.com]
for internal use testing and prototyping wheelchair components.

Maintenance was taken over and the project was open sourced by Brian Thorne in 2010.

Acknowledgements

Originally written by Ben Powell as a thin wrapper around the Kvaser SDK
to support the leaf device.

Support for linux socketcan was added by Rose Lu as a summer coding
project in 2011. The socketcan interface was helped immensely by Phil Dixon
who wrote a leaf-socketcan driver for Linux.

The pcan interface was contributed by Albert Bloomfield in 2013.
Support for pcan on Mac was added by Kristian Sloth Lauszus in 2018.

The usb2can interface was contributed by Joshua Villyard in 2015.

The IXXAT VCI interface was contributed by Giuseppe Corbelli and funded
by Weightpack [http://www.weightpack.com] in 2016.

The NI-CAN and virtual interfaces plus the ASCII and BLF loggers were
contributed by Christian Sandberg in 2016 and 2017. The BLF format is based on
a C++ library by Toby Lorenz.

The slcan interface, ASCII listener and log logger and listener were contributed
by Eduard Bröcker in 2017.

The NeoVi interface for ICS (Intrepid Control Systems) devices was contributed
by Pierre-Luc Tessier Gagné in 2017.

Many improvements all over the library, cleanups, unifications as well as more
comprehensive documentation and CI testing was contributed by Felix Divo in 2017
and 2018.

The CAN viewer terminal script was contributed by Kristian Sloth Lauszus in 2018.

Support for CAN within Python

Python natively supports the CAN protocol from version 3.3 on, if running on Linux:

	Python version

	Feature

	Link

	3.3

	Initial SocketCAN support

	Docs [https://docs.python.org/3/library/socket.html#socket.AF_CAN]

	3.4

	Broadcast Banagement (BCM) commands are natively supported

	Docs [https://docs.python.org/3/library/socket.html#socket.CAN_BCM]

	3.5

	CAN FD support

	Docs [https://docs.python.org/3/library/socket.html#socket.CAN_RAW_FD_FRAMES]

	3.7

	Support for CAN ISO-TP

	Docs [https://docs.python.org/3/library/socket.html#socket.CAN_ISOTP]

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 can	

 	
 	
 can.broadcastmanager	

 	
 	
 can.util	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__str__() (can.Message method)

A

 	
 	add_bus() (can.Notifier method)

 	add_listener() (can.Notifier method)

 	arbitration_id (can.Message attribute)

 	
 	arguments (can.interfaces.nican.NicanError attribute)

 	ASCReader (class in can)

 	ASCWriter (class in can)

 	AsyncBufferedReader (class in can)

B

 	
 	bitrate_switch (can.Message attribute)

 	BLFReader (class in can)

 	BLFWriter (class in can)

 	blocking_receive() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	
 	blocking_send() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	BufferedReader (class in can)

 	Bus (class in can)

 	BusABC (class in can)

C

 	
 	can (module)

 	can.broadcastmanager (module)

 	can.util (module)

 	CanError (class in can)

 	CanutilsLogReader (class in can)

 	CanutilsLogWriter (class in can)

 	channel (can.Message attribute)

 	channel2int() (in module can.util)

 	
 	channel_info (can.BusABC attribute)

 	close() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	COMPRESSION_LEVEL (can.BLFWriter attribute)

 	CSVReader (class in can)

 	CSVWriter (class in can)

 	CyclicSendTask (class in can.interfaces.socketcan)

 	CyclicSendTaskABC (class in can.broadcastmanager)

 	CyclicTask (class in can.broadcastmanager)

D

 	
 	data (can.Message attribute)

 	detect_available_configs() (can.util.can method)

 	
 	dlc (can.Message attribute)

 	dlc2len() (in module can.util)

E

 	
 	equals() (can.Message method)

 	error_code (can.interfaces.nican.NicanError attribute)

 	
 	error_state_indicator (can.Message attribute)

 	exception (can.Notifier attribute)

F

 	
 	filters (can.BusABC attribute)

 	flash() (can.interfaces.kvaser.canlib.KvaserBus method)

 	(can.interfaces.pcan.PcanBus method)

 	
 	flush_tx_buffer() (can.BusABC method)

 	(can.interfaces.kvaser.canlib.KvaserBus method)

 	(can.interfaces.vector.VectorBus method)

 	function (can.interfaces.nican.NicanError attribute)

G

 	
 	get_library_version() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	get_message() (can.AsyncBufferedReader method)

 	(can.BufferedReader method)

 	GET_MESSAGE_TIMEOUT (can.SqliteWriter attribute)

 	
 	get_serial_number() (can.interfaces.ics_neovi.NeoViBus static method)

 	get_statistics() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	get_status() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	get_vendor_string() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	get_version() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

I

 	
 	is_error_frame (can.Message attribute)

 	is_extended_id (can.Message attribute)

 	is_fd (can.Message attribute)

 	
 	is_remote_frame (can.Message attribute)

 	IscanBus (class in can.interfaces.iscan)

 	IscanError

K

 	
 	KvaserBus (class in can.interfaces.kvaser.canlib)

L

 	
 	len2dlc() (in module can.util)

 	LimitedDurationCyclicSendTaskABC (class in can.broadcastmanager)

 	Listener (class in can)

 	load_config() (in module can.util)

 	
 	load_environment_config() (in module can.util)

 	load_file_config() (in module can.util)

 	log_event() (can.ASCWriter method)

 	(can.BLFWriter method)

 	Logger (class in can)

M

 	
 	MAX_BUFFER_SIZE_BEFORE_WRITES (can.SqliteWriter attribute)

 	MAX_CACHE_SIZE (can.BLFWriter attribute)

 	MAX_TIME_BETWEEN_WRITES (can.SqliteWriter attribute)

 	Message (class in can)

 	
 	ModifiableCyclicTaskABC (class in can)

 	modify_data() (can.interfaces.socketcan.CyclicSendTask method)

 	(can.ModifiableCyclicTaskABC method)

 	MultiRateCyclicSendTaskABC (class in can.broadcastmanager)

N

 	
 	NeoViBus (class in can.interfaces.ics_neovi)

 	NicanBus (class in can.interfaces.nican)

 	
 	NicanError

 	Notifier (class in can)

O

 	
 	on_error() (can.Listener method)

 	on_message_received() (can.ASCWriter method)

 	(can.AsyncBufferedReader method)

 	(can.BLFWriter method)

 	(can.BufferedReader method)

 	(can.CSVWriter method)

 	(can.CanutilsLogWriter method)

 	(can.Listener method)

 	(can.Printer method)

 	
 	open() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

P

 	
 	PcanBus (class in can.interfaces.pcan)

 	
 	Printer (class in can)

R

 	
 	read_all() (can.SqliteReader method)

 	receive() (can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	recv() (can.BusABC method)

 	(can.interfaces.socketcan.SocketcanBus method)

 	
 	RECV_LOGGING_LEVEL (can.BusABC attribute)

 	remove_listener() (can.Notifier method)

 	reset() (can.interfaces.nican.NicanBus method)

 	(can.interfaces.pcan.PcanBus method)

 	RestartableCyclicTaskABC (class in can)

S

 	
 	send() (can.BusABC method)

 	(can.interfaces.ics_neovi.NeoViBus method)

 	(can.interfaces.iscan.IscanBus method)

 	(can.interfaces.kvaser.canlib.KvaserBus method)

 	(can.interfaces.nican.NicanBus method)

 	(can.interfaces.pcan.PcanBus method)

 	(can.interfaces.serial.serial_can.SerialBus method)

 	(can.interfaces.slcan.slcanBus method)

 	(can.interfaces.socketcan.SocketcanBus method)

 	(can.interfaces.usb2can.Usb2CanAbstractionLayer method)

 	(can.interfaces.usb2can.Usb2canBus method)

 	(can.interfaces.vector.VectorBus method)

 	send_periodic() (can.BusABC method)

 	(in module can.broadcastmanager)

 	SerialBus (class in can.interfaces.serial.serial_can)

 	set_filters() (can.BusABC method)

 	(can.interfaces.nican.NicanBus method)

 	set_logging_level() (in module can.util)

 	shutdown() (can.BusABC method)

 	(can.interfaces.ics_neovi.NeoViBus method)

 	(can.interfaces.iscan.IscanBus method)

 	(can.interfaces.kvaser.canlib.KvaserBus method)

 	(can.interfaces.nican.NicanBus method)

 	(can.interfaces.pcan.PcanBus method)

 	(can.interfaces.serial.serial_can.SerialBus method)

 	(can.interfaces.slcan.slcanBus method)

 	(can.interfaces.socketcan.SocketcanBus method)

 	(can.interfaces.usb2can.Usb2canBus method)

 	(can.interfaces.vector.VectorBus method)

 	
 	slcanBus (class in can.interfaces.slcan)

 	SocketcanBus (class in can.interfaces.socketcan)

 	SqliteReader (class in can)

 	SqliteWriter (class in can)

 	start() (can.interfaces.socketcan.CyclicSendTask method)

 	(can.RestartableCyclicTaskABC method)

 	state (can.BusABC attribute)

 	(can.interfaces.pcan.PcanBus attribute)

 	status() (can.interfaces.pcan.PcanBus method)

 	status_is_ok() (can.interfaces.pcan.PcanBus method)

 	stop() (can.ASCWriter method)

 	(can.BLFWriter method)

 	(can.BufferedReader method)

 	(can.Listener method)

 	(can.Notifier method)

 	(can.SqliteReader method)

 	(can.SqliteWriter method)

 	(can.broadcastmanager.CyclicTask method)

 	(can.interfaces.socketcan.CyclicSendTask method)

 	stop_all_periodic_tasks() (can.BusABC method)

T

 	
 	ThreadSafeBus (class in can)

 	
 	timestamp (can.Message attribute)

U

 	
 	Usb2CanAbstractionLayer (class in can.interfaces.usb2can)

 	
 	Usb2canBus (class in can.interfaces.usb2can)

V

 	
 	VectorBus (class in can.interfaces.vector)

 	
 	VectorError

 _static/up.png

_images/wireshark.png
[>>> producer(10)
INFO:can.socketcan_native:Created a socket
DEBUG: can.socketcan_native:Binding socket to channel=vcane

® - o vcano [Wireshark 1.8.2
DEBUG: can.socketcan_native:We've been asked to write a message to the bus L !

DEBUG: can.socketcan_native:Received: can_id=coffee, can_dlc=8, data=b'\n\x00\x00\xcf= T fe)
DEBUG: can.socketcan_native:CAN: Standard SEe Exce Q

DEBUG: can.socketcan_native:Received: can_id=coffee, can_dlc=8, data=b'\n\x00\x00\xcisiems

DEBUG: can.socketcan_native:CAN: Standard Expression...

DEBUG: can. socketcan_native:We've been asked to write a message to the bus No. Time Source Destination Protocol Length Info

DEBUG: can. socketcan_native:We've been asked to write a message to the bus 1'0.000600000 can 16 STD: 0x00cOffee 0a 00 60 01 03 01 04 01
DEBUG: can. socketcan_native:Received: can_id=coffee, can_dlc=8,

DEBUGf(a"‘5°(tet(a"f”at?"efc“m.Sts?dard a g 3 0.001682000 AN 16 STD: 0x00cOffec 0a 62 00 01 03 61 04 01
gg:ﬂg::zzzkg::f::ﬁ:zZiﬁei‘s’iandgigf I, G, 4 0.002103000 AN 16 STD: Oxe0cOffee 0a 03 00 01 03 01 04 01
DEBUG: can. socketcan_native:Received: can_id=coffee, can_dlc=8, 5|6.862478666 AN 16/STD: ox6acaffee 0a 04 00 01 03 01 64 01
e TR I e T RO SEntEnd] 6 0.002853000 can 16 STD: 0x00cOffec 0a 65 00 01 03 01 04 01
DEBUG: can. socketcan_native:Received: can_id=ceffee, can_dlc=8, X X X 7 6.003240000 CAN 16 STD: 0x60cOffee 0a 06 60 01 63 01 04 01
DEBUG: can. socketcan_native:We've been asked to write a message to the bus 8 0.003639000 can 16 STD: 0x00cOffec 0a 67 00 01 03 01 04 01
DEBUG: can. socketcan_native:CAN: Standard 9 6.004005000 can 16 STD: 0x00cOffec 0a 68 00 01 03 01 04 01
DEBUG: can. socketcan_native:Received: can_id=coffee, can_dlc=8, 03\x00\x 10 6.004385000 can 16 STD: 0x00COffec 0a 69 @0 01 03 1 64 01
DEBUG: can.socketcan_native:CAN: Standard 11 38.98114200(can 16 STD: ox08coffec 6a 00 60 01 03 61 04 1
DEBUGf(a”‘5°(tet(a”7”aq"efnefewid1 (a"fj:(effe?' G, el aeds 12 39.02868700(can 16 STD: 0x00cOTfec Oa 01 00 01 03 01 04 01
e ey oo g ed fo write 2 message to the bus 13 39.03432300(can 16 STD: 0x00cOffec 0a 62 00 01 03 01 04 01
DEBUG: can. socketcan_native:We've been asked to write a message to the bus 1439.16962966 AN 16/STD: @x6acaffee 0a 03 60 01 03 01 04 01
DEBUG: can. socketcan_native:Received: can_id=coffee, can_dlc=8, 04\x00\x 15 39.17656706(AN 16 STD: exeoceffec 0a 64 00 01 63 61 04 01
DEBUG:can.socketcan_native:Received: can_id=ceffee, can_dlc=8, X X X 16 39.20745000(CAN 16 STD: 0x60cOffee 0a 05 60 01 63 01 04 01
DEBUG: can. socketcan_native:We've been asked to write a message 17 39.22888100(can 16 STD: 0x00cOffec 0a 06 00 01 03 61 04 01
DEBUG: can. socketcan_native:CAN: Standard 18 39.38354100(can 16 STD: 0x00cOffec 0a 67 00 01 03 01 04 01
DEBUG: can.socketcan_native:CAN: Standard 19 39.48155700(AN 16 STD: 0x60c6ffee 0a 08 00 01 63 01 04 61
DEBUG: can. socketcan_native:Received: can_id=coffee, can_dlc=8, 05\ x00\x 26139, 58527806(AN 16/STD: 0x00cAffec 0a 69 60 01 63 1 64 61

DEBUG: can.socketcan_native:We've been asked to write a message
DEBUG: can.socketcan_native:Received: can_id=coffee, can_dlc=8,
PEBUG: can. socketcan native:CaN: Standard > Frane 2: 16 bytes on wire (128 bits), 16 bytes captured (128 bits) on interface 0
pEBUG: can socketean et AL ST - vce o message

DEBUG: can. socketcan_native:Received: can_id=coffee, can_dlc=8, 00000 1100 0000 1111 1111 1116 1110

Identifier: 0x08coffee

DEBUG: can. socketcan_native:Received: can_id=ceffee, can_dlc=8, e = Extended Flag: False

DEBUG: can.socketcan_native:We've been asked to write a message 4 = Remote Transmission Request Flag: False
DEBUG: can.socketcan_native:CAN: Standard] = Error Flag: False

DEBUG: can.socketcan_native:CAN: Standard Frame-Length: 8

DEBUG: can. socketcan_native:Received: can_id=ceffee, can_dlc=8, RUCCRERIRE « Data (8 bytes)

DEBUG: can. socketcan_native:Received: can_id=ceffee, can_dlc=8, Data: 0a01000103910401

DEBUG: can. socketcan_native:CAN: Standard [Length: 8]

DEBUG: can.socketcan_native:CAN: Standard

DEBUG: can.socketcan_native:Received: can_id=coffee, can_dlc=8,
DEBUG: can.socketcan_native:Received: can_id=coffee, ' \n\x08\ x00\ x LT
DEBUG: can.socketcan_native:CAN: Standard

DEBUG: can.socketcan_native:CAN: Standard

DEBUG: can. socketcan_native:Received: can_id=coffee,
DEBUG: can.socketcan_native:CAN: Standard

e Rl o (R Frame (frame), 16 bytes Packets: 20 Displayed: 20 Marked: 0 Droppe... - Profile: Default

_static/ajax-loader.gif

_images/viewer.png
Count
14
510
1177
1177
133
133
133
133
133
133
133
133
133
133
1177
1177
1177
133
133
133
133
133
133
133
133
133
133
133
133
510
510
65
510
65
1252
1251
1241
2486
2486
1251
1251
1251

Time

118.884757
123.283816
123.354005
123.352952
123.345939
123.346099
123.346326
123.346985
123.347096
123.347336
123.347931
123.348112
123.348338
123.352078
123.354920
123.358016
123.355925
123.349015
123.349107
123.349331
123.349958
123.350154
123.350350
123.340031
123.340937
123.341941
123.342946
123.343936
123.344893
123.294528
123.284057
122.035098
123.284230
122.035354
123.434077
123.410814
123.388151
123.433095
123.432953
123.392075
123.391466
123.391718

dt
39.110070
0.249922
0.117875
0.117906
1.062629
1.062508
1.062497
1.062441
1.062339
1.062343
1.062645
1.062670
1.062648
1.062858
0.117775
0.117962
0.117854
1.062675
1.062563
1.062556
1.062847
1.062819
1.062782
1.062874
1.062782
1.062762
1.062771
1.062737
1.062669
0.259875
0.249957
2.499398
0.249805
2.499410
0.100077
0.099982
0.100562
0.049963
0.049914
0.099990
0.099862
0.099909

1. ssh

1D DLC Data

0x004 8 00 01 00 00 00 00 00
0x080 0

0x104 8 02 00 00 00 11 00 70
0x105 8 A4 72 6D 42 11 D3 91
0x106 8 QE BF 57 BC FB 63 2A
0x107 8 B7 84 22 (1 1C 75 44
0x108 8 35 E7 31 BD FB 7A F4
0x109 8 EC DF B7 BD F2 84 1D
0x10A 8 2D 44 1E C1 3D 6F 14
0x10B 8 7C 04 E3 3B BB BF EB
0x10C 8 EF D5 62 3B 92 5F 16
0x10D 8 60 B2 F8 BB 82 46 4E
0x10E 8 B4 01 71 BB C@ 5F 51
0x10F 8 27 16 @9 42 49 09 03
0x110 8 1D DD 96 BB DA CC 1C
0x119 8 00 00 00 00 D8 58 A8
Ox11F 8 B8 13 02 BC 91 B4 BF
0x121 8 6F 7E E1 3B 38 51 28
0x122 8 1B E6 AQ BB 83 B9 43
0x123 8 7C 51 B3 3B 11 7F 55
0x124 8 EQ 1B 47 BE S5E 14 47
0x125 8 E1 A3 1C C1 AB 75 8A
0x126 8 F7 43 15 3E 8D 68 18
0x149 8 S5E 95 1E 96 EF 95 60
0x141 6 01 01 08 @5 65 OE
0x142 8 12 04 01 1A 01 07 60
0x143 8 00 00 00 00 8A 22 25
0x144 8 01 CO OF 46 00 00 00
0x145 5 00 00 00 00 00
0x181 8 00 00 00 00 00 00 00
0x201 8 00 00 00 00 00 00 00
0x281 7 0B 00 OF 00 1E 00 01
0x301 6 00 00 00 00 00 00
0x381 8 50 04 00 00 CD 16 00
0x701 1 05

0x702 1 05

0x715 1 05

Ox77E 1 05

Ox77F 1 05

0x0000007B 4 00 00 00 00
0x0000097B 8 00 00 00 00 00 00 00
0x00000E7B 8 @D FD 00 00 OA B8 DA

00

00
41
3F
BC
3A
3F
3C
BB
BB
3A
BA
42
BB
41
BB
BD
BC
3B
3E
BE
a
00

00
04
OF
00
00

00

00
E5

Parsed values

2 0.170000 64.171273
59.361954 18.228060
-0.013168 0.665588

-10.157401 -0.687023
-2.488550 0.106870

-0.089783 0.615310

-9.891644 0.5190840
0.396947 -0.4122148
0.198314 -0.1314669
-0.434853 0.0450850
-0.210703 -0.045762
34.271633 32.759068
-0.263790 -0.137085
0.000000 21.043381

-0.454887 -0.335202
0.394282 -2.3544608

3.823800 3.843000 3.838300 96
1185 368.500000
184126179

0.000000 88.420000 106.100000
1 403.200000 7.000000 0 0 15
0.000000 0.000000 0

0 0.000000 0

11 15 30 100.000000

0.000000 0.000000 0.0000000

35.810000 0.000000 27.440000 -94.9900000

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 python-can

 		
 Installation

 		
 GNU/Linux dependencies

 		
 Windows dependencies

 		
 Kvaser

 		
 PCAN

 		
 IXXAT

 		
 NI-CAN

 		
 neoVI

 		
 Installing python-can in development mode

 		
 Configuration

 		
 In Code

 		
 Configuration File

 		
 Environment Variables

 		
 Interface Names

 		
 Library API

 		
 Bus

 		
 Autoconfig Bus

 		
 API

 		
 Transmitting

 		
 Receiving

 		
 Filtering

 		
 Thread safe bus

 		
 Message

 		
 Listeners

 		
 Listener

 		
 BufferedReader

 		
 Logger

 		
 Printer

 		
 CSVWriter

 		
 SqliteWriter

 		
 ASC (.asc Logging format)

 		
 Log (.log can-utils Logging format)

 		
 BLF (Binary Logging Format)

 		
 Asyncio support

 		
 Example

 		
 Broadcast Manager

 		
 Message Sending Tasks

 		
 Utilities

 		
 Notifier

 		
 Errors

 		
 CAN Interface Modules

 		
 SocketCAN

 		
 Socketcan Quickstart

 		
 Wireshark

 		
 Reading and Timeouts

 		
 Filtering

 		
 Broadcast Manager

 		
 Bus

 		
 Kvaser’s CANLIB

 		
 Bus

 		
 Internals

 		
 CAN over Serial

 		
 Bus

 		
 Internals

 		
 CAN over Serial / SLCAN

 		
 Supported devices

 		
 Bus

 		
 Internals

 		
 IXXAT Virtual CAN Interface

 		
 Bus

 		
 Configuration file

 		
 Internals

 		
 PCAN Basic API

 		
 Configuration

 		
 Linux installation

 		
 Bus

 		
 USB2CAN Interface

 		
 OVERVIEW

 		
 WINDOWS SUPPORT

 		
 WINDOWS INSTALL

 		
 Interface Layout

 		
 Interface Specific Items

 		
 Bus

 		
 Internals

 		
 NI-CAN

 		
 Bus

 		
 isCAN

 		
 Bus

 		
 NEOVI Interface

 		
 Installation

 		
 Configuration

 		
 Bus

 		
 Vector

 		
 Bus

 		
 Virtual

 		
 Scripts

 		
 can.logger

 		
 can.player

 		
 can.viewer

 		
 Command line arguments

 		
 Developer’s Overview

 		
 Contributing

 		
 Building & Installing

 		
 Creating a new interface/backend

 		
 About the BusABC class

 		
 Code Structure

 		
 Creating a new Release

 		
 History and Roadmap

 		
 Background

 		
 Acknowledgements

 		
 Support for CAN within Python

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

