
python-can
Release 4.3.1

unknown

Apr 29, 2024

CONTENTS

1 Installation 3

2 Configuration 7

3 Library API 11

4 Hardware Interfaces 71

5 Virtual Interfaces 135

6 Plugin Interface 143

7 Other CAN bus tools 145

8 Scripts 147

9 Developer’s Overview 155

10 History 159

11 Known Bugs 161

Python Module Index 163

Index 165

i

ii

python-can, Release 4.3.1

The python-can library provides Controller Area Network support for Python, providing common abstractions to
different hardware devices, and a suite of utilities for sending and receiving messages on a CAN bus.

python-can runs any where Python runs; from high powered computers with commercial CAN to USB devices right
down to low powered devices running linux such as a BeagleBone or RaspberryPi.

More concretely, some example uses of the library:

• Passively logging what occurs on a CAN bus. For example monitoring a commercial vehicle using its OBD-II
port.

• Testing of hardware that interacts via CAN. Modules found in modern cars, motorcycles, boats, and even
wheelchairs have had components tested from Python using this library.

• Prototyping new hardware modules or software algorithms in-the-loop. Easily interact with an existing bus.

• Creating virtual modules to prototype CAN bus communication.

Brief example of the library in action: connecting to a CAN bus, creating and sending a message:

1 #!/usr/bin/env python
2

3 """
4 This example shows how sending a single message works.
5 """
6

7 import can
8

9

10 def send_one():
11 """Sends a single message."""
12

13 # this uses the default configuration (for example from the config file)
14 # see https://python-can.readthedocs.io/en/stable/configuration.html
15 with can.Bus() as bus:
16 # Using specific buses works similar:
17 # bus = can.Bus(interface='socketcan', channel='vcan0', bitrate=250000)
18 # bus = can.Bus(interface='pcan', channel='PCAN_USBBUS1', bitrate=250000)
19 # bus = can.Bus(interface='ixxat', channel=0, bitrate=250000)
20 # bus = can.Bus(interface='vector', app_name='CANalyzer', channel=0, bitrate=250000)
21 # ...
22

23 msg = can.Message(
24 arbitration_id=0xC0FFEE, data=[0, 25, 0, 1, 3, 1, 4, 1], is_extended_id=True
25)
26

27 try:
28 bus.send(msg)
29 print(f"Message sent on {bus.channel_info}")
30 except can.CanError:
31 print("Message NOT sent")
32

33

34 if __name__ == "__main__":
35 send_one()

Contents:

CONTENTS 1

http://python.org/download/
https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II
https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II

python-can, Release 4.3.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

Install the can package from PyPi with pip or similar:

$ pip install python-can

Warning: As most likely you will want to interface with some hardware, you may also have to install platform
dependencies. Be sure to check any other specifics for your hardware in Hardware Interfaces.

Many interfaces can install their dependencies at the same time as python-can, for instance the interface serial
includes the pyserial dependency which can be installed with the serial extra:

$ pip install python-can[serial]

1.1 GNU/Linux dependencies

Reasonably modern Linux Kernels (2.6.25 or newer) have an implementation of socketcan. This version of python-
can will directly use socketcan if called with Python 3.3 or greater, otherwise that interface is used via ctypes.

1.2 Windows dependencies

1.2.1 Kvaser

To install python-can using the Kvaser CANLib SDK as the backend:

1. Install Kvaser’s latest Windows CANLib drivers.

2. Test that Kvaser’s own tools work to ensure the driver is properly installed and that the hardware is working.

3

https://www.kvaser.com/download/

python-can, Release 4.3.1

1.2.2 PCAN

Download and install the latest driver for your interface:

• Windows (also supported on Cygwin)

• Linux (also works without, see also Linux installation)

• macOS

Note that PCANBasic API timestamps count seconds from system startup. To convert these to epoch times, the uptime
library is used. If it is not available, the times are returned as number of seconds from system startup. To install the
uptime library, run pip install python-can[pcan].

This library can take advantage of the Python for Windows Extensions library if installed. It will be used to get notified
of new messages instead of the CPU intensive polling that will otherwise have be used.

1.2.3 IXXAT

To install python-can using the IXXAT VCI V3 or V4 SDK as the backend:

1. Install IXXAT’s latest Windows VCI V3 SDK or VCI V4 SDK (Win10) drivers.

2. Test that IXXAT’s own tools (i.e. MiniMon) work to ensure the driver is properly installed and that the hardware
is working.

1.2.4 NI-CAN

Download and install the NI-CAN drivers from National Instruments.

Currently the driver only supports 32-bit Python on Windows.

1.2.5 neoVI

See Intrepid Control Systems neoVI .

1.2.6 Vector

To install python-can using the XL Driver Library as the backend:

1. Install the latest drivers for your Vector hardware interface.

2. Install the XL Driver Library or copy the vxlapi.dll and/or vxlapi64.dll into your working directory.

3. Use Vector Hardware Configuration to assign a channel to your application.

4 Chapter 1. Installation

https://www.peak-system.com/Downloads.76.0.html?&L=1
https://www.peak-system.com/Downloads.76.0.html?&L=1
https://www.peak-system.com/fileadmin/media/linux/index.htm
https://www.mac-can.com
https://github.com/mhammond/pywin32
https://www.ixxat.com/technical-support/resources/downloads-and-documentation?ordercode=1.01.0281.12001
https://www.ni.com/de-de/support/downloads/drivers
https://www.vector.com/latest_driver
https://www.vector.com/xl-lib/11/

python-can, Release 4.3.1

1.2.7 CANtact

CANtact is supported on Linux, Windows, and macOS. To install python-can using the CANtact driver backend:

python3 -m pip install "python-can[cantact]"

If python-can is already installed, the CANtact backend can be installed separately:

pip install cantact

Additional CANtact documentation is available at cantact.io.

1.2.8 CanViewer

python-can has support for showing a simple CAN viewer terminal application by running python -m can.viewer.
On Windows, this depends on the windows-curses library which can be installed with:

python -m pip install "python-can[viewer]"

1.3 Installing python-can in development mode

A “development” install of this package allows you to make changes locally or pull updates from the Git repository and
use them without having to reinstall. Download or clone the source repository then:

python setup.py develop

1.3. Installing python-can in development mode 5

https://cantact.io
https://pypi.org/project/windows-curses/

python-can, Release 4.3.1

6 Chapter 1. Installation

CHAPTER

TWO

CONFIGURATION

Usually this library is used with a particular CAN interface, this can be specified in code, read from configuration files
or environment variables.

See can.util.load_config() for implementation.

2.1 In Code

The can object exposes an rc dictionary which can be used to set the interface and channel.

import can
can.rc['interface'] = 'socketcan'
can.rc['channel'] = 'vcan0'
can.rc['bitrate'] = 500000
from can.interface import Bus

bus = Bus()

You can also specify the interface and channel for each Bus instance:

import can

bus = can.interface.Bus(interface='socketcan', channel='vcan0', bitrate=500000)

2.2 Configuration File

On Linux and macOS systems the config file is searched in the following paths:

1. ~/can.conf

2. /etc/can.conf

3. $HOME/.can

4. $HOME/.canrc

On Windows systems the config file is searched in the following paths:

1. %USERPROFILE%/can.conf

2. can.ini (current working directory)

3. %APPDATA%/can.ini

7

python-can, Release 4.3.1

The configuration file sets the default interface and channel:

[default]
interface = <the name of the interface to use>
channel = <the channel to use by default>
bitrate = <the bitrate in bits/s to use by default>

The configuration can also contain additional sections (or context):

[default]
interface = <the name of the interface to use>
channel = <the channel to use by default>
bitrate = <the bitrate in bits/s to use by default>

[HS]
All the values from the 'default' section are inherited
channel = <the channel to use>
bitrate = <the bitrate in bits/s to use. i.e. 500000>

[MS]
All the values from the 'default' section are inherited
channel = <the channel to use>
bitrate = <the bitrate in bits/s to use. i.e. 125000>

from can.interface import Bus

hs_bus = Bus(config_context='HS')
ms_bus = Bus(config_context='MS')

2.3 Environment Variables

Configuration can be pulled from these environmental variables:

• CAN_INTERFACE

• CAN_CHANNEL

• CAN_BITRATE

• CAN_CONFIG

The CAN_CONFIG environment variable allows to set any bus configuration using JSON.

For example:

CAN_INTERFACE=socketcan CAN_CONFIG={"receive_own_messages": true, "fd": true}

8 Chapter 2. Configuration

python-can, Release 4.3.1

2.4 Interface Names

Lookup table of interface names:

Name Documentation
"canalystii" CANalyst-II
"cantact" CANtact CAN Interface
"etas" ETAS
"gs_usb" Geschwister Schneider and candleLight
"iscan" isCAN
"ixxat" IXXAT Virtual Communication Interface
"kvaser" Kvaser’s CANLIB
"neousys" Neousys CAN Interface
"neovi" Intrepid Control Systems neoVI
"nican" National Instruments NI-CAN
"nixnet" National Instruments NI-XNET
"pcan" PCAN Basic API
"robotell" Robotell CAN-USB interface
"seeedstudio" Seeed Studio USB-CAN Analyzer
"serial" CAN over Serial
"slcan" CAN over Serial / SLCAN
"socketcan" SocketCAN
"socketcand" socketcand Interface
"systec" SYSTEC interface
"udp_multicast" Multicast IP Interface
"usb2can" USB2CAN Interface
"vector" Vector
"virtual" Virtual

Additional interface types can be added via the Plugin Interface.

2.4. Interface Names 9

python-can, Release 4.3.1

10 Chapter 2. Configuration

CHAPTER

THREE

LIBRARY API

The main objects are the Bus and the Message. A form of CAN interface is also required.

Hint: Check the backend specific documentation for any implementation specific details.

3.1 Bus

The BusABC class provides a wrapper around a physical or virtual CAN Bus.

An interface specific instance is created by calling the Bus() function with a particular interface, for example:

vector_bus = can.Bus(interface='vector', ...)

The created bus is then able to handle the interface specific software/hardware interactions while giving the user the
same top level API.

A thread safe bus wrapper is also available, see Thread safe bus.

3.1.1 Transmitting

Writing individual messages to the bus is done by calling the send() method and passing a Message instance.

with can.Bus() as bus:
msg = can.Message(

arbitration_id=0xC0FFEE,
data=[0, 25, 0, 1, 3, 1, 4, 1],
is_extended_id=True

)
try:

bus.send(msg)
print(f"Message sent on {bus.channel_info}")

except can.CanError:
print("Message NOT sent")

Periodic sending is controlled by the broadcast manager.

11

python-can, Release 4.3.1

3.1.2 Receiving

Reading from the bus is achieved by either calling the recv() method or by directly iterating over the bus:

with can.Bus() as bus:
for msg in bus:

print(msg.data)

Alternatively the Listener api can be used, which is a list of various Listener implementations that receive and handle
messages from a Notifier.

3.1.3 Filtering

Message filtering can be set up for each bus. Where the interface supports it, this is carried out in the hardware or
kernel layer - not in Python. All messages that match at least one filter are returned.

Example defining two filters, one to pass 11-bit ID 0x451, the other to pass 29-bit ID 0xA0000:

filters = [
{"can_id": 0x451, "can_mask": 0x7FF, "extended": False},
{"can_id": 0xA0000, "can_mask": 0x1FFFFFFF, "extended": True},

]
bus = can.interface.Bus(channel="can0", interface="socketcan", can_filters=filters)

See set_filters() for the implementation.

3.1.4 Bus API

can.Bus(channel=None, interface=None, config_context=None, ignore_config=False, **kwargs)
Create a new bus instance with configuration loading.

Instantiates a CAN Bus of the given interface, falls back to reading a configuration file from default locations.

Note: Please note that while the arguments provided to this class take precedence over any existing values from
configuration, it is possible that other parameters from the configuration may be added to the bus instantiation.
This could potentially have unintended consequences. To prevent this, you may use the ignore_config parameter
to ignore any existing configurations.

Parameters

• channel (str | int | None) – Channel identification. Expected type is backend depen-
dent. Set to None to let it be resolved automatically from the default Configuration.

• interface (str | None) – See Interface Names for a list of supported interfaces. Set to
None to let it be resolved automatically from the default Configuration.

• config_context (str | None) – Extra ‘context’, that is passed to config sources. This
can be used to select a section other than ‘default’ in the configuration file.

• ignore_config (bool) – If True, only the given arguments will be used for the bus instan-
tiation. Existing configuration sources will be ignored.

• kwargs (Any) – interface specific keyword arguments.

Raises

12 Chapter 3. Library API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

• CanInterfaceNotImplementedError – if the interface isn’t recognized or cannot be
loaded

• CanInitializationError – if the bus cannot be instantiated

• ValueError – if the channel could not be determined

Return type
BusABC

class can.BusABC(channel, can_filters=None, **kwargs)
The CAN Bus Abstract Base Class that serves as the basis for all concrete interfaces.

This class may be used as an iterator over the received messages and as a context manager for auto-closing the
bus when done using it.

Please refer to Error Handling for possible exceptions that may be thrown by certain operations on this bus.

Parameters

• channel (Any)

• can_filters (Sequence[CanFilter | CanFilterExtended] | None)

• kwargs (object)

RECV_LOGGING_LEVEL = 9

Log level for received messages

channel_info = 'unknown'

a string describing the underlying bus and/or channel

property filters: Sequence[CanFilter | CanFilterExtended] | None

Modify the filters of this bus. See set_filters() for details.

flush_tx_buffer()

Discard every message that may be queued in the output buffer(s).

Return type
None

property protocol: CanProtocol

Return the CAN protocol used by this bus instance.

This value is set at initialization time and does not change during the lifetime of a bus instance.

recv(timeout=None)
Block waiting for a message from the Bus.

Parameters
timeout (float | None) – seconds to wait for a message or None to wait indefinitely

Returns
None on timeout or a Message object.

Raises
CanOperationError – If an error occurred while reading

Return type
Message | None

3.1. Bus 13

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

python-can, Release 4.3.1

abstract send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout (float | None) – If > 0, wait up to this many seconds for message to be ACK’ed
or for transmit queue to be ready depending on driver implementation. If timeout is ex-
ceeded, an exception will be raised. Might not be supported by all interfaces. None blocks
indefinitely.

Raises
CanOperationError – If an error occurred while sending

Return type
None

send_periodic(msgs, period, duration=None, store_task=True, modifier_callback=None)
Start sending messages at a given period on this bus.

The task will be active until one of the following conditions are met:

• the (optional) duration expires

• the Bus instance goes out of scope

• the Bus instance is shutdown

• stop_all_periodic_tasks() is called

• the task’s stop() method is called.

Parameters

• msgs (Message | Sequence[Message]) – Message(s) to transmit

• period (float) – Period in seconds between each message

• duration (float | None) – Approximate duration in seconds to continue sending mes-
sages. If no duration is provided, the task will continue indefinitely.

• store_task (bool) – If True (the default) the task will be attached to this Bus instance.
Disable to instead manage tasks manually.

• modifier_callback (Callable[[Message], None] | None) – Function which
should be used to modify each message’s data before sending. The callback modifies the
data of the message and returns None.

Returns
A started task instance. Note the task can be stopped (and depending on the backend modified)
by calling the task’s stop() method.

Return type
CyclicSendTaskABC

Note: Note the duration before the messages stop being sent may not be exactly the same as the duration
specified by the user. In general the message will be sent at the given rate until at least duration seconds.

14 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable

python-can, Release 4.3.1

Note: For extremely long-running Bus instances with many short-lived tasks the default api with
store_task==True may not be appropriate as the stopped tasks are still taking up memory as they are
associated with the Bus instance.

set_filters(filters=None)
Apply filtering to all messages received by this Bus.

All messages that match at least one filter are returned. If filters is None or a zero length sequence, all
messages are matched.

Calling without passing any filters will reset the applied filters to None.

Parameters
filters (Sequence[CanFilter | CanFilterExtended] | None) – A iterable of dic-
tionaries each containing a “can_id”, a “can_mask”, and an optional “extended” key:

[{"can_id": 0x11, "can_mask": 0x21, "extended": False}]

A filter matches, when <received_can_id> & can_mask == can_id & can_mask. If
extended is set as well, it only matches messages where <received_is_extended> ==
extended. Else it matches every messages based only on the arbitration ID and mask.

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

Return type
None

property state: BusState

Return the current state of the hardware

stop_all_periodic_tasks(remove_tasks=True)
Stop sending any messages that were started using send_periodic().

Note: The result is undefined if a single task throws an exception while being stopped.

Parameters
remove_tasks (bool) – Stop tracking the stopped tasks.

Return type
None

class can.BusState(value)
The state in which a can.BusABC can be.

ACTIVE = 1

ERROR = 3

PASSIVE = 2

3.1. Bus 15

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

class can.bus.CanProtocol(value)
The CAN protocol type supported by a can.BusABC instance

CAN_20 = 1

CAN_FD = 2

CAN_XL = 3

3.1.5 Thread safe bus

This thread safe version of the BusABC class can be used by multiple threads at once. Sending and receiving is locked
separately to avoid unnecessary delays. Conflicting calls are executed by blocking until the bus is accessible.

It can be used exactly like the normal BusABC:

'socketcan' is only an example interface, it works with all the others too
my_bus = can.ThreadSafeBus(interface='socketcan', channel='vcan0')
my_bus.send(...)
my_bus.recv(...)

class can.ThreadSafeBus(*args, **kwargs)
Contains a thread safe can.BusABC implementation that wraps around an existing interface instance. All public
methods of that base class are now safe to be called from multiple threads. The send and receive methods are
synchronized separately.

Use this as a drop-in replacement for BusABC.

Note: This approach assumes that both send() and _recv_internal() of the underlying bus instance can be
called simultaneously, and that the methods use _recv_internal() instead of recv() directly.

3.2 Message

class can.Message(timestamp=0.0, arbitration_id=0, is_extended_id=True, is_remote_frame=False,
is_error_frame=False, channel=None, dlc=None, data=None, is_fd=False, is_rx=True,
bitrate_switch=False, error_state_indicator=False, check=False)

The Message object is used to represent CAN messages for sending, receiving and other purposes like converting
between different logging formats.

Messages can use extended identifiers, be remote or error frames, contain data and may be associated to a channel.

Messages are always compared by identity and never by value, because that may introduce unexpected behaviour.
See also equals().

copy()/deepcopy() is supported as well.

Messages do not support “dynamic” attributes, meaning any others than the documented ones, since it uses
__slots__.

To create a message object, simply provide any of the below attributes together with additional parameters as
keyword arguments to the constructor.

Parameters

16 Chapter 3. Library API

https://docs.python.org/3/library/copy.html#copy.copy
https://docs.python.org/3/library/copy.html#copy.deepcopy
https://docs.python.org/3/reference/datamodel.html#object.__slots__

python-can, Release 4.3.1

• check (bool) – By default, the constructor of this class does not strictly check the input.
Thus, the caller must prevent the creation of invalid messages or set this parameter to True,
to raise an Error on invalid inputs. Possible problems include the dlc field not matching the
length of data or creating a message with both is_remote_frame and is_error_frame set to
True.

• timestamp (float)

• arbitration_id (int)

• is_extended_id (bool)

• is_remote_frame (bool)

• is_error_frame (bool)

• channel (str | int | None)

• dlc (int | None)

• data (bytes | bytearray | int | Iterable[int] | None)

• is_fd (bool)

• is_rx (bool)

• bitrate_switch (bool)

• error_state_indicator (bool)

Raises
ValueError – If and only if check is set to True and one or more arguments were invalid

One can instantiate a Message defining data, and optional arguments for all attributes such as arbitration ID,
flags, and timestamp.

>>> from can import Message
>>> test = Message(data=[1, 2, 3, 4, 5])
>>> test.data
bytearray(b'\x01\x02\x03\x04\x05')
>>> test.dlc
5
>>> print(test)
Timestamp: 0.000000 ID: 00000000 X Rx DL: 5 01 02␣
→˓03 04 05

The arbitration_id field in a CAN message may be either 11 bits (standard addressing, CAN 2.0A) or 29 bits
(extended addressing, CAN 2.0B) in length, and python-can exposes this difference with the is_extended_id
attribute.

timestamp

Type
float

The timestamp field in a CAN message is a floating point number representing when the message was
received since the epoch in seconds. Where possible this will be timestamped in hardware.

arbitration_id

Type
int

3.2. Message 17

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

The frame identifier used for arbitration on the bus.

The arbitration ID can take an int between 0 and the maximum value allowed depending on the
is_extended_id flag (either 211 - 1 for 11-bit IDs, or 229 - 1 for 29-bit identifiers).

>>> print(Message(is_extended_id=False, arbitration_id=100))
Timestamp: 0.000000 ID: 064 S Rx DL: 0

data

Type
bytearray

The data parameter of a CAN message is exposed as a bytearray with length between 0 and 8.

>>> example_data = bytearray([1, 2, 3])
>>> print(Message(data=example_data))
Timestamp: 0.000000 ID: 00000000 X Rx DL: 3 01␣
→˓02 03

A Message can also be created with bytes, or lists of ints:

>>> m1 = Message(data=[0x64, 0x65, 0x61, 0x64, 0x62, 0x65, 0x65, 0x66])
>>> print(m1.data)
bytearray(b'deadbeef')
>>> m2 = Message(data=b'deadbeef')
>>> m2.data
bytearray(b'deadbeef')

dlc

Type
int

The DLC (Data Length Code) parameter of a CAN message is an integer between 0 and 8 representing the
frame payload length.

In the case of a CAN FD message, this indicates the data length in number of bytes.

>>> m = Message(data=[1, 2, 3])
>>> m.dlc
3

Note: The DLC value does not necessarily define the number of bytes of data in a message.

Its purpose varies depending on the frame type - for data frames it represents the amount of data contained
in the message, in remote frames it represents the amount of data being requested.

channel

Type
str or int or None

This might store the channel from which the message came.

is_extended_id

18 Chapter 3. Library API

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

Type
bool

This flag controls the size of the arbitration_id field. Previously this was exposed as id_type.

>>> print(Message(is_extended_id=False))
Timestamp: 0.000000 ID: 000 S Rx DL: 0
>>> print(Message(is_extended_id=True))
Timestamp: 0.000000 ID: 00000000 X Rx DL: 0

Note: The initializer argument and attribute extended_id has been deprecated in favor of
is_extended_id, but will continue to work for the 3.x release series.

is_error_frame

Type
bool

This boolean parameter indicates if the message is an error frame or not.

>>> print(Message(is_error_frame=True))
Timestamp: 0.000000 ID: 00000000 X Rx E DL: 0

is_remote_frame

Type
bool

This boolean attribute indicates if the message is a remote frame or a data frame, and modifies the bit in
the CAN message’s flags field indicating this.

>>> print(Message(is_remote_frame=True))
Timestamp: 0.000000 ID: 00000000 X Rx R DL: 0

is_fd

Type
bool

Indicates that this message is a CAN FD message.

is_rx

Type
bool

Indicates whether this message is a transmitted (Tx) or received (Rx) frame

bitrate_switch

Type
bool

If this is a CAN FD message, this indicates that a higher bitrate was used for the data transmission.

error_state_indicator

Type
bool

3.2. Message 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

If this is a CAN FD message, this indicates an error active state.

__str__()

A string representation of a CAN message:

>>> from can import Message
>>> test = Message()
>>> print(test)
Timestamp: 0.000000 ID: 00000000 X Rx DL: 0
>>> test2 = Message(data=[1, 2, 3, 4, 5])
>>> print(test2)
Timestamp: 0.000000 ID: 00000000 X Rx DL: 5 01␣
→˓02 03 04 05

The fields in the printed message are (in order):

• timestamp,

• arbitration ID,

• flags,

• data length (DL),

• and data.

The flags field is represented as one, two or three letters:

• X if the is_extended_id attribute is set, otherwise S,

• E if the is_error_frame attribute is set,

• R if the is_remote_frame attribute is set.

The arbitration ID field is represented as either a four or eight digit hexadecimal number depending on the
length of the arbitration ID (11-bit or 29-bit).

Each of the bytes in the data field (when present) are represented as two-digit hexadecimal numbers.

equals(other, timestamp_delta=1e-06, check_channel=True, check_direction=True)
Compares a given message with this one.

Parameters

• other (Message) – the message to compare with

• timestamp_delta (float | None) – the maximum difference in seconds at which two
timestamps are still considered equal or None to not compare timestamps

• check_channel (bool) – whether to compare the message channel

• check_direction (bool) – whether to compare the messages’ directions (Tx/Rx)

Returns
True if and only if the given message equals this one

Return type
bool

20 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

3.3 Notifier and Listeners

3.3.1 Notifier

The Notifier object is used as a message distributor for a bus. The Notifier uses an event loop or creates a thread to read
messages from the bus and distributes them to listeners.

class can.Notifier(bus, listeners, timeout=1.0, loop=None)
Manages the distribution of Message instances to listeners.

Supports multiple buses and listeners.

Note: Remember to call stop() after all messages are received as many listeners carry out flush operations to
persist data.

Parameters

• bus (BusABC | List[BusABC]) – A Bus or a list of buses to listen to.

• listeners (Iterable[Listener | Callable[[Message], Awaitable[None] |
None]]) – An iterable of Listener or callables that receive a Message and return nothing.

• timeout (float) – An optional maximum number of seconds to wait for any Message.

• loop (AbstractEventLoop | None) – An asyncio event loop to schedule the
listeners in.

add_bus(bus)
Add a bus for notification.

Parameters
bus (BusABC) – CAN bus instance.

Return type
None

add_listener(listener)
Add new Listener to the notification list. If it is already present, it will be called two times each time a
message arrives.

Parameters
listener (Listener | Callable[[Message], Awaitable[None] | None]) – Lis-
tener to be added to the list to be notified

Return type
None

exception: Exception | None

Exception raised in thread

remove_listener(listener)
Remove a listener from the notification list. This method throws an exception if the given listener is not
part of the stored listeners.

Parameters
listener (Listener | Callable[[Message], Awaitable[None] | None]) – Lis-
tener to be removed from the list to be notified

3.3. Notifier and Listeners 21

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Awaitable
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Awaitable

python-can, Release 4.3.1

Raises
ValueError – if listener was never added to this notifier

Return type
None

stop(timeout=5)
Stop notifying Listeners when new Message objects arrive and call stop() on each Listener.

Parameters
timeout (float) – Max time in seconds to wait for receive threads to finish. Should be
longer than timeout given at instantiation.

Return type
None

3.3.2 Listener

The Listener class is an “abstract” base class for any objects which wish to register to receive notifications of new
messages on the bus. A Listener can be used in two ways; the default is to call the Listener with a new message, or by
calling the method on_message_received.

Listeners are registered with Notifier object(s) which ensure they are notified whenever a new message is received.

1 #!/usr/bin/env python
2

3 import time
4 import can
5

6

7 def main():
8 with can.Bus(receive_own_messages=True) as bus:
9 print_listener = can.Printer()

10 can.Notifier(bus, [print_listener])
11

12 bus.send(can.Message(arbitration_id=1, is_extended_id=True))
13 bus.send(can.Message(arbitration_id=2, is_extended_id=True))
14 bus.send(can.Message(arbitration_id=1, is_extended_id=False))
15

16 time.sleep(1.0)
17

18

19 if __name__ == "__main__":
20 main()

Subclasses of Listener that do not override on_message_received will cause NotImplementedError to be thrown
when a message is received on the CAN bus.

class can.Listener

The basic listener that can be called directly to handle some CAN message:

listener = SomeListener()
msg = my_bus.recv()

now either call
(continues on next page)

22 Chapter 3. Library API

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#NotImplementedError

python-can, Release 4.3.1

(continued from previous page)

listener(msg)
or
listener.on_message_received(msg)

Important to ensure all outputs are flushed
listener.stop()

on_error(exc)
This method is called to handle any exception in the receive thread.

Parameters
exc (Exception) – The exception causing the thread to stop

Return type
None

abstract on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

Return type
None

abstract stop()

Stop handling new messages, carry out any final tasks to ensure data is persisted and cleanup any open
resources.

Concrete implementations override.

Return type
None

There are some listeners that already ship together with python-can and are listed below. Some of them allow messages
to be written to files, and the corresponding file readers are also documented here.

Note: Please note that writing and the reading a message might not always yield a completely unchanged message
again, since some properties are not (yet) supported by some file formats.

Note: Additional file formats for both reading/writing log files can be added via a plugin reader/writer. An external
package can register a new reader by using the can.io.message_reader entry point. Similarly, a writer can be added
using the can.io.message_writer entry point.

The format of the entry point is reader_name=module:classname where classname is a can.io.generic.
BaseIOHandler concrete implementation.

entry_points={
'can.io.message_reader': [
'.asc = my_package.io.asc:ASCReader'

]
},

3.3. Notifier and Listeners 23

https://docs.python.org/3/library/exceptions.html#Exception

python-can, Release 4.3.1

3.3.3 BufferedReader

class can.BufferedReader

A BufferedReader is a subclass of Listener which implements a message buffer: that is, when the can.
BufferedReader instance is notified of a new message it pushes it into a queue of messages waiting to be
serviced. The messages can then be fetched with get_message().

Putting in messages after stop() has been called will raise an exception, see on_message_received().

Attr is_stopped
True if the reader has been stopped

get_message(timeout=0.5)
Attempts to retrieve the message that has been in the queue for the longest amount of time (FIFO). If no
message is available, it blocks for given timeout or until a message is received (whichever is shorter), or
else returns None. This method does not block after can.BufferedReader.stop() has been called.

Parameters
timeout (float) – The number of seconds to wait for a new message.

Returns
the received can.Message or None, if the queue is empty.

Return type
Message | None

on_message_received(msg)
Append a message to the buffer.

Raises
BufferError if the reader has already been stopped

Parameters
msg (Message)

Return type
None

stop()

Prohibits any more additions to this reader.

Return type
None

class can.AsyncBufferedReader(**kwargs)
A message buffer for use with asyncio.

See Asyncio support for how to use with can.Notifier.

Can also be used as an asynchronous iterator:

async for msg in reader:
print(msg)

Parameters
kwargs (Any)

24 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

async get_message()

Retrieve the latest message when awaited for:

msg = await reader.get_message()

Returns
The CAN message.

Return type
Message

on_message_received(msg)
Append a message to the buffer.

Must only be called inside an event loop!

Parameters
msg (Message)

Return type
None

stop()

Stop handling new messages, carry out any final tasks to ensure data is persisted and cleanup any open
resources.

Concrete implementations override.

Return type
None

3.3.4 RedirectReader

class can.RedirectReader(bus, *args, **kwargs)
A RedirectReader sends all received messages to another Bus.

Parameters

• bus (BusABC)

• args (Any)

• kwargs (Any)

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

Return type
None

3.3. Notifier and Listeners 25

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

3.4 File IO

3.4.1 Reading and Writing Files

can.LogReader(filename, **kwargs)
Find and return the appropriate MessageReader instance for a given file suffix.

The format is determined from the file suffix which can be one of:

• .asc can.ASCReader

• .blf can.BLFReader

• .csv can.CSVReader

• .db can.SqliteReader

• .log can.CanutilsLogReader

• .mf4 can.MF4Reader (optional, depends on asammdf)

• .trc can.TRCReader

Gzip compressed files can be used as long as the original files suffix is one of the above (e.g. filename.asc.gz).

Exposes a simple iterator interface, to use simply:

for msg in can.LogReader("some/path/to/my_file.log"):
print(msg)

Parameters

• filename (str | os.PathLike[str]) – the filename/path of the file to read from

• kwargs (Any)

Raises
ValueError – if the filename’s suffix is of an unknown file type

Return type
MessageReader

Note: There are no time delays, if you want to reproduce the measured delays between messages look at the
can.MessageSync class.

Note: This function itself is just a dispatcher, and any positional and keyword arguments are passed on to the
returned instance.

can.Logger(filename, **kwargs)
Find and return the appropriate MessageWriter instance for a given file suffix.

The format is determined from the file suffix which can be one of:

• .asc can.ASCWriter

• .blf can.BLFWriter

• .csv: can.CSVWriter

26 Chapter 3. Library API

https://github.com/danielhrisca/asammdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError

python-can, Release 4.3.1

• .db can.SqliteWriter

• .log can.CanutilsLogWriter

• .mf4 can.MF4Writer (optional, depends on asammdf)

• .trc can.TRCWriter

• .txt can.Printer

Any of these formats can be used with gzip compression by appending the suffix .gz (e.g. filename.asc.gz).
However, third-party tools might not be able to read these files.

The filename may also be None, to fall back to can.Printer.

The log files may be incomplete until stop() is called due to buffering.

Parameters

• filename (str | PathLike[str] | None) – the filename/path of the file to write to,
may be a path-like object or None to instantiate a Printer

• kwargs (Any)

Raises
ValueError – if the filename’s suffix is of an unknown file type

Return type
MessageWriter

Note: This function itself is just a dispatcher, and any positional and keyword arguments are passed on to the
returned instance.

can.io.logger.MESSAGE_WRITERS: Final[Dict[str, Type[MessageWriter]]] = {'.asc': <class
'can.io.asc.ASCWriter'>, '.blf': <class 'can.io.blf.BLFWriter'>, '.csv': <class
'can.io.csv.CSVWriter'>, '.db': <class 'can.io.sqlite.SqliteWriter'>, '.log': <class
'can.io.canutils.CanutilsLogWriter'>, '.mf4': <class 'can.io.mf4.MF4Writer'>, '.trc':
<class 'can.io.trc.TRCWriter'>, '.txt': <class 'can.io.printer.Printer'>}

A map of file suffixes to their corresponding can.io.generic.MessageWriter class

can.io.player.MESSAGE_READERS: Final[Dict[str, Type[MessageReader]]] = {'.asc': <class
'can.io.asc.ASCReader'>, '.blf': <class 'can.io.blf.BLFReader'>, '.csv': <class
'can.io.csv.CSVReader'>, '.db': <class 'can.io.sqlite.SqliteReader'>, '.log': <class
'can.io.canutils.CanutilsLogReader'>, '.mf4': <class 'can.io.mf4.MF4Reader'>, '.trc':
<class 'can.io.trc.TRCReader'>}

A map of file suffixes to their corresponding can.io.generic.MessageReader class

3.4.2 Printer

class can.Printer(file=None, append=False, **kwargs)
Bases: MessageWriter

The Printer class is a subclass of Listener which simply prints any messages it receives to the terminal (stdout).
A message is turned into a string using __str__().

Attr write_to_file
True if this instance prints to a file instead of standard out

Parameters

3.4. File IO 27

https://github.com/danielhrisca/asammdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Final
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/typing.html#typing.Final
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type

python-can, Release 4.3.1

• file (TextIO | None) – An optional path-like object or a file-like object to “print” to
instead of writing to standard out (stdout). If this is a file-like object, it has to be opened in
text write mode, not binary write mode.

• append (bool) – If set to True messages, are appended to the file, else the file is truncated

• kwargs (Any)

file_size()

Return an estimate of the current file size in bytes.

Return type
int

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

Return type
None

3.4.3 CSVWriter

class can.CSVWriter(file, append=False, **kwargs)
Bases: TextIOMessageWriter

Writes a comma separated text file with a line for each message. Includes a header line.

The columns are as follows:

name of column format description example
timestamp decimal float 1483389946.197
arbitration_id hex 0x00dadada
extended 1 == True, 0 == False 1
remote 1 == True, 0 == False 0
error 1 == True, 0 == False 0
dlc int 6
data base64 encoded WzQyLCA5XQ==

Each line is terminated with a platform specific line separator.

Parameters

• file (TextIO) – a path-like object or a file-like object to write to. If this is a file-like object,
is has to open in text write mode, not binary write mode.

• append (bool) – if set to True messages are appended to the file and no header line is written,
else the file is truncated and starts with a newly written header line

• kwargs (Any)

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

28 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

Return type
None

class can.CSVReader(file, **kwargs)
Bases: TextIOMessageReader

Iterator over CAN messages from a .csv file that was generated by CSVWriter or that uses the same format as
described there. Assumes that there is a header and thus skips the first line.

Any line separator is accepted.

Parameters

• file (TextIO) – a path-like object or as file-like object to read from If this is a file-like
object, is has to opened in text read mode, not binary read mode.

• kwargs (Any)

3.4.4 SqliteWriter

class can.SqliteWriter(file, table_name='messages', **kwargs)
Bases: MessageWriter, BufferedReader

Logs received CAN data to a simple SQL database.

The sqlite database may already exist, otherwise it will be created when the first message arrives.

Messages are internally buffered and written to the SQL file in a background thread. Ensures that all messages
that are added before calling stop() are actually written to the database after that call returns. Thus, calling
stop() may take a while.

Attr str table_name
the name of the database table used for storing the messages

Attr int num_frames
the number of frames actually written to the database, this excludes messages that are still buffered

Attr float last_write
the last time a message war actually written to the database, as given by time.time()

Parameters

• file (TextIO | BinaryIO | GzipFile | None)

• table_name (str)

• kwargs (Any)

Note: When the listener’s stop() method is called the thread writing to the database will continue to receive
and internally buffer messages if they continue to arrive before the GET_MESSAGE_TIMEOUT.

If the GET_MESSAGE_TIMEOUT expires before a message is received, the internal buffer is written out to the
database file.

However if the bus is still saturated with messages, the Listener will continue receiving until the
MAX_TIME_BETWEEN_WRITES timeout is reached or more than MAX_BUFFER_SIZE_BEFORE_WRITES messages
are buffered.

Note: The database schema is given in the documentation of the loggers.

3.4. File IO 29

https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

Parameters

• file (TextIO | BinaryIO | GzipFile | None) – a str or path like object that points
to the database file to use

• table_name (str) – the name of the table to store messages in

• kwargs (Any)

Warning: In contrary to all other readers/writers the Sqlite handlers do not accept file-like objects as the
file parameter.

GET_MESSAGE_TIMEOUT = 0.25

Number of seconds to wait for messages from internal queue

MAX_BUFFER_SIZE_BEFORE_WRITES = 500

Maximum number of messages to buffer before writing to the database

MAX_TIME_BETWEEN_WRITES = 5.0

Maximum number of seconds to wait between writes to the database

stop()

Stops the reader an writes all remaining messages to the database. Thus, this might take a while and block.

class can.SqliteReader(file, table_name='messages', **kwargs)
Bases: MessageReader

Reads recorded CAN messages from a simple SQL database.

This class can be iterated over or used to fetch all messages in the database with read_all().

Calling len() on this object might not run in constant time.

Attr str table_name
the name of the database table used for storing the messages

Parameters

• file (TextIO | BinaryIO | GzipFile | None)

• table_name (str)

• kwargs (Any)

Note: The database schema is given in the documentation of the loggers.

Parameters

• file (TextIO | BinaryIO | GzipFile | None) – a str path like object that points to
the database file to use

• table_name (str) – the name of the table to look for the messages

• kwargs (Any)

Warning: In contrary to all other readers/writers the Sqlite handlers do not accept file-like objects as the
file parameter. It also runs in append=True mode all the time.

30 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

read_all()

Fetches all messages in the database.

Return type
Generator[can.Message]

stop()

Closes the connection to the database.

Database table format

The messages are written to the table messages in the sqlite database by default. The table is created if it does not
already exist.

The entries are as follows:

Name Data type Note
ts REAL The timestamp of the message
arbitration_id INTEGER The arbitration id, might use the extended format
extended INTEGER 1 if the arbitration id uses the extended format, else 0
remote INTEGER 1 if the message is a remote frame, else 0
error INTEGER 1 if the message is an error frame, else 0
dlc INTEGER The data length code (DLC)
data BLOB The content of the message

3.4.5 ASC (.asc Logging format)

ASCWriter logs CAN data to an ASCII log file compatible with other CAN tools such as Vector CANalyzer/CANoe
and other. Since no official specification exists for the format, it has been reverse- engineered from existing log files.
One description of the format can be found here.

Note: Channels will be converted to integers.

class can.ASCWriter(file, channel=1, **kwargs)
Bases: TextIOMessageWriter

Logs CAN data to an ASCII log file (.asc).

The measurement starts with the timestamp of the first registered message. If a message has a timestamp smaller
than the previous one or None, it gets assigned the timestamp that was written for the last message. It the first
message does not have a timestamp, it is set to zero.

Parameters

• file (TextIO) – a path-like object or as file-like object to write to If this is a file-like object,
is has to opened in text write mode, not binary write mode.

• channel (int) – a default channel to use when the message does not have a channel set

• kwargs (Any)

log_event(message, timestamp=None)
Add a message to the log file.

Parameters

3.4. File IO 31

http://zone.ni.com/reference/en-XX/help/370859J-01/dlgcanconverter/dlgcanconverter/canconverter_ascii_logfiles/
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

• message (str) – an arbitrary message

• timestamp (float | None) – the absolute timestamp of the event

Return type
None

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

Return type
None

stop()

Closes the underlying file-like object and flushes it, if it was opened in write mode.

Return type
None

ASCReader reads CAN data from ASCII log files .asc, as further references can-utils can be used: asc2log, log2asc.

class can.ASCReader(file, base='hex', relative_timestamp=True, **kwargs)
Bases: TextIOMessageReader

Iterator of CAN messages from a ASC logging file. Meta data (comments, bus statistics, J1939 Transport Pro-
tocol messages) is ignored.

Parameters

• file (TextIO) – a path-like object or as file-like object to read from If this is a file-like
object, is has to opened in text read mode, not binary read mode.

• base (str) – Select the base(hex or dec) of id and data. If the header of the asc file contains
base information, this value will be overwritten. Default “hex”.

• relative_timestamp (bool) – Select whether the timestamps are relative (starting at 0.0)
or absolute (starting at the system time). Default True = relative.

• kwargs (Any)

3.4.6 Log (.log can-utils Logging format)

CanutilsLogWriter logs CAN data to an ASCII log file compatible with can-utils <https://github.com/linux-can/can-
utils> As specification following references can-utils can be used: asc2log, log2asc.

class can.CanutilsLogWriter(file, channel='vcan0', append=False, **kwargs)
Bases: TextIOMessageWriter

Logs CAN data to an ASCII log file (.log). This class is is compatible with “candump -L”.

If a message has a timestamp smaller than the previous one (or 0 or None), it gets assigned the timestamp that
was written for the last message. It the first message does not have a timestamp, it is set to zero.

Parameters

• file (TextIO) – a path-like object or as file-like object to write to If this is a file-like object,
is has to opened in text write mode, not binary write mode.

• channel (str) – a default channel to use when the message does not have a channel set

32 Chapter 3. Library API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://github.com/linux-can/can-utils/blob/master/asc2log.c
https://github.com/linux-can/can-utils/blob/master/log2asc.c
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://github.com/linux-can/can-utils/blob/master/asc2log.c
https://github.com/linux-can/can-utils/blob/master/log2asc.c
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/stdtypes.html#str

python-can, Release 4.3.1

• append (bool) – if set to True messages are appended to the file, else the file is truncated

• kwargs (Any)

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg – the delivered message

CanutilsLogReader reads CAN data from ASCII log files .log

class can.CanutilsLogReader(file, **kwargs)
Bases: TextIOMessageReader

Iterator over CAN messages from a .log Logging File (candump -L).

Note: .log-format looks for example like this:

(0.0) vcan0 001#8d00100100820100

Parameters

• file (TextIO) – a path-like object or as file-like object to read from If this is a file-like
object, is has to opened in text read mode, not binary read mode.

• kwargs (Any)

3.4.7 BLF (Binary Logging Format)

Implements support for BLF (Binary Logging Format) which is a proprietary CAN log format from Vector Informatik
GmbH.

The data is stored in a compressed format which makes it very compact.

Note: Channels will be converted to integers.

class can.BLFWriter(file, append=False, channel=1, compression_level=-1, **kwargs)
Bases: FileIOMessageWriter

Logs CAN data to a Binary Logging File compatible with Vector’s tools.

Parameters

• file (BinaryIO) – a path-like object or as file-like object to write to If this is a file-like
object, is has to opened in mode “wb+”.

• channel (int) – Default channel to log as if not specified by the interface.

• append (bool) – Append messages to an existing log file.

• compression_level (int) – An integer from 0 to 9 or -1 controlling the level of
compression. 1 (Z_BEST_SPEED) is fastest and produces the least compression. 9
(Z_BEST_COMPRESSION) is slowest and produces the most. 0 means that data will
be stored without processing. The default value is -1 (Z_DEFAULT_COMPRESSION).
Z_DEFAULT_COMPRESSION represents a default compromise between speed and com-
pression (currently equivalent to level 6).

3.4. File IO 33

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• kwargs (Any)

application_id = 5

Application identifier for the log writer

file_size()

Return an estimate of the current file size in bytes.

Return type
int

log_event(text, timestamp=None)
Add an arbitrary message to the log file as a global marker.

Parameters

• text (str) – The group name of the marker.

• timestamp (float) – Absolute timestamp in Unix timestamp format. If not given, the
marker will be placed along the last message.

max_container_size = 131072

Max log container size of uncompressed data

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg – the delivered message

stop()

Stops logging and closes the file.

The following class can be used to read messages from BLF file:

class can.BLFReader(file, **kwargs)
Bases: BinaryIOMessageReader

Iterator of CAN messages from a Binary Logging File.

Only CAN messages and error frames are supported. Other object types are silently ignored.

Parameters

• file (BinaryIO) – a path-like object or as file-like object to read from If this is a file-like
object, is has to opened in binary read mode, not text read mode.

• kwargs (Any)

3.4.8 MF4 (Measurement Data Format v4)

Implements support for MF4 (Measurement Data Format v4) which is a proprietary format from ASAM (Associa-
tion for Standardization of Automation and Measuring Systems), widely used in many automotive software (Vector
CANape, ETAS INCA, dSPACE ControlDesk, etc.).

The data is stored in a compressed format which makes it compact.

Note: MF4 support has to be installed as an extra with for example pip install python-can[mf4].

34 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

Note: Channels will be converted to integers.

Note: MF4Writer does not suppport the append mode.

class can.MF4Writer(file, database=None, compression_level=2, **kwargs)
Bases: BinaryIOMessageWriter

Logs CAN data to an ASAM Measurement Data File v4 (.mf4).

MF4Writer does not support append mode.

If a message has a timestamp smaller than the previous one or None, it gets assigned the timestamp that was
written for the last message. It the first message does not have a timestamp, it is set to zero.

Parameters

• file (BinaryIO | GzipFile) – A path-like object or as file-like object to write to. If this
is a file-like object, is has to be opened in binary write mode, not text write mode.

• database (str | os.PathLike[str] | None) – optional path to a DBC or ARXML
file that contains message description.

• compression_level (int) – compression option as integer (default 2) * 0 - no compression
* 1 - deflate (slower, but produces smaller files) * 2 - transposition + deflate (slowest, but
produces the smallest files)

• kwargs (Any)

file_size()

Return an estimate of the current file size in bytes.

Return type
int

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

Return type
None

stop()

Closes the underlying file-like object and flushes it, if it was opened in write mode.

Return type
None

The MDF format is very flexible regarding the internal structure and it is used to handle data from multiple sources, not
just CAN bus logging. MDF4Writer will always create a fixed internal file structure where there will be three channel
groups (for standard, error and remote frames). Using this fixed file structure allows for a simple implementation of
MDF4Writer and MF4Reader classes. Therefor MF4Reader can only replay files created with MF4Writer.

The following class can be used to read messages from MF4 file:

3.4. File IO 35

https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

class can.MF4Reader(file, **kwargs)
Bases: BinaryIOMessageReader

Iterator of CAN messages from a MF4 logging file.

The MF4Reader only supports MF4 files that were recorded with python-can.

Parameters

• file (BinaryIO | GzipFile) – a path-like object or as file-like object to read from If this
is a file-like object, is has to be opened in binary read mode, not text read mode.

• kwargs (Any)

stop()

Closes the underlying file-like object and flushes it, if it was opened in write mode.

Return type
None

3.4.9 TRC

Implements basic support for the TRC file format.

Note: Comments and contributions are welcome on what file versions might be relevant.

class can.TRCWriter(file, channel=1, **kwargs)
Bases: TextIOMessageWriter

Logs CAN data to text file (.trc).

The measurement starts with the timestamp of the first registered message. If a message has a timestamp smaller
than the previous one or None, it gets assigned the timestamp that was written for the last message. If the first
message does not have a timestamp, it is set to zero.

Parameters

• file (TextIO) – a path-like object or as file-like object to write to If this is a file-like object,
is has to opened in text write mode, not binary write mode.

• channel (int) – a default channel to use when the message does not have a channel set

• kwargs (Any)

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

Return type
None

The following class can be used to read messages from TRC file:

class can.TRCReader(file, **kwargs)
Bases: TextIOMessageReader

Iterator of CAN messages from a TRC logging file.

Parameters

36 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

• file (TextIO) – a path-like object or as file-like object to read from If this is a file-like
object, is has to opened in text read mode, not binary read mode.

• kwargs (Any)

3.4.10 Rotating Loggers

class can.io.BaseRotatingLogger(**kwargs)
Bases: MessageWriter, ABC

Base class for rotating CAN loggers. This class is not meant to be instantiated directly. Subclasses must imple-
ment the should_rollover() and do_rollover() methods according to their rotation strategy.

The rotation behavior can be further customized by the user by setting the namer and rotator attributes after
instantiating the subclass.

These attributes as well as the methods rotation_filename() and rotate() and the corresponding docstrings
are carried over from the python builtin BaseRotatingHandler.

Subclasses must set the _writer attribute upon initialization.

Parameters

• file – a path-like object to open a file, a file-like object to be used as a file or None to not
use a file at all

• mode – the mode that should be used to open the file, see open(), ignored if file is None

• kwargs (Any)

abstract do_rollover()

Perform rollover.

Return type
None

namer: Callable[[str | os.PathLike[str]], str | os.PathLike[str]] | None = None

If this attribute is set to a callable, the rotation_filename() method delegates to this callable. The
parameters passed to the callable are those passed to rotation_filename().

on_message_received(msg)
This method is called to handle the given message.

Parameters
msg (Message) – the delivered message

Return type
None

rollover_count: int = 0

An integer counter to track the number of rollovers.

rotate(source, dest)
When rotating, rotate the current log.

The default implementation calls the rotator attribute of the handler, if it’s callable, passing the source
and dest arguments to it. If the attribute isn’t callable (the default is None), the source is simply renamed
to the destination.

Parameters

3.4. File IO 37

https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.BaseRotatingHandler
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

python-can, Release 4.3.1

• source (str | PathLike[str]) – The source filename. This is normally the base file-
name, e.g. “test.log”

• dest (str | PathLike[str]) – The destination filename. This is normally what the
source is rotated to, e.g. “test_#001.log”.

Return type
None

rotation_filename(default_name)
Modify the filename of a log file when rotating.

This is provided so that a custom filename can be provided. The default implementation calls the namer
attribute of the handler, if it’s callable, passing the default name to it. If the attribute isn’t callable (the
default is None), the name is returned unchanged.

Parameters
default_name (str | PathLike[str]) – The default name for the log file.

Return type
str | PathLike[str]

rotator: Callable[[str | os.PathLike[str], str | os.PathLike[str]], None] | None =
None

If this attribute is set to a callable, the rotate() method delegates to this callable. The parameters passed
to the callable are those passed to rotate().

abstract should_rollover(msg)
Determine if the rollover conditions are met.

Parameters
msg (Message)

Return type
bool

stop()

Stop handling new messages.

Carry out any final tasks to ensure data is persisted and cleanup any open resources.

Return type
None

abstract property writer: FileIOMessageWriter

This attribute holds an instance of a writer class which manages the actual file IO.

class can.SizedRotatingLogger(base_filename, max_bytes=0, **kwargs)
Bases: BaseRotatingLogger

Log CAN messages to a sequence of files with a given maximum size.

The logger creates a log file with the given base_filename. When the size threshold is reached the current log file
is closed and renamed by adding a timestamp and the rollover count. A new log file is then created and written
to.

This behavior can be customized by setting the namer and rotator attribute.

Example:

38 Chapter 3. Library API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

from can import Notifier, SizedRotatingLogger
from can.interfaces.vector import VectorBus

bus = VectorBus(channel=[0], app_name="CANape", fd=True)

logger = SizedRotatingLogger(
base_filename="my_logfile.asc",
max_bytes=5 * 1024 ** 2, # =5MB

)
logger.rollover_count = 23 # start counter at 23

notifier = Notifier(bus=bus, listeners=[logger])

The SizedRotatingLogger currently supports the formats

• .asc: can.ASCWriter

• .blf can.BLFWriter

• .csv: can.CSVWriter

• .log can.CanutilsLogWriter

• .txt can.Printer (if pointing to a file)

Note: The can.SqliteWriter is not supported yet.

The log files on disk may be incomplete due to buffering until stop() is called.

Parameters

• base_filename (str | os.PathLike[str]) – A path-like object for the base filename.
The log file format is defined by the suffix of base_filename.

• max_bytes (int) – The size threshold at which a new log file shall be created. If set to 0,
no rollover will be performed.

• kwargs (Any)

do_rollover()

Perform rollover.

Return type
None

should_rollover(msg)
Determine if the rollover conditions are met.

Parameters
msg (Message)

Return type
bool

property writer: FileIOMessageWriter

This attribute holds an instance of a writer class which manages the actual file IO.

3.4. File IO 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

3.4.11 Replaying Files

class can.MessageSync(messages, timestamps=True, gap=0.0001, skip=60.0)
Used to iterate over some given messages in the recorded time.

Creates an new MessageSync instance.

Parameters

• messages (Iterable[Message]) – An iterable of can.Message instances.

• timestamps (bool) – Use the messages’ timestamps. If False, uses the gap parameter as
the time between messages.

• gap (float) – Minimum time between sent messages in seconds

• skip (float) – Skip periods of inactivity greater than this (in seconds).

Example:

import can

with can.LogReader("my_logfile.asc") as reader, can.Bus(interface="virtual") as bus:
for msg in can.MessageSync(messages=reader):

print(msg)
bus.send(msg)

3.5 Asyncio support

The asyncio module built into Python 3.4 and later can be used to write asynchronous code in a single thread. This
library supports receiving messages asynchronously in an event loop using the can.Notifier class.

There will still be one thread per CAN bus but the user application will execute entirely in the event loop, allowing
simpler concurrency without worrying about threading issues. Interfaces that have a valid file descriptor will however
be supported natively without a thread.

You can also use the can.AsyncBufferedReader listener if you prefer to write coroutine based code instead of using
callbacks.

3.5.1 Example

Here is an example using both callback and coroutine based code:

#!/usr/bin/env python

"""
This example demonstrates how to use async IO with python-can.
"""

import asyncio
from typing import List

import can
from can.notifier import MessageRecipient

(continues on next page)

40 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/asyncio.html#module-asyncio

python-can, Release 4.3.1

(continued from previous page)

def print_message(msg: can.Message) -> None:
"""Regular callback function. Can also be a coroutine."""
print(msg)

async def main() -> None:
"""The main function that runs in the loop."""

with can.Bus(
interface="virtual", channel="my_channel_0", receive_own_messages=True

) as bus:
reader = can.AsyncBufferedReader()
logger = can.Logger("logfile.asc")

listeners: List[MessageRecipient] = [
print_message, # Callback function
reader, # AsyncBufferedReader() listener
logger, # Regular Listener object

]
Create Notifier with an explicit loop to use for scheduling of callbacks
loop = asyncio.get_running_loop()
notifier = can.Notifier(bus, listeners, loop=loop)
Start sending first message
bus.send(can.Message(arbitration_id=0))

print("Bouncing 10 messages...")
for _ in range(10):

Wait for next message from AsyncBufferedReader
msg = await reader.get_message()
Delay response
await asyncio.sleep(0.5)
msg.arbitration_id += 1
bus.send(msg)

Wait for last message to arrive
await reader.get_message()
print("Done!")

Clean-up
notifier.stop()

if __name__ == "__main__":
asyncio.run(main())

3.5. Asyncio support 41

python-can, Release 4.3.1

3.6 Broadcast Manager

The broadcast manager allows the user to setup periodic message jobs. For example sending a particular message at a
given period. The broadcast manager supported natively by several interfaces and a software thread based scheduler is
used as a fallback.

This example shows the socketcan backend using the broadcast manager:

1 #!/usr/bin/env python
2

3 """
4 This example exercises the periodic sending capabilities.
5

6 Expects a vcan0 interface:
7

8 python3 -m examples.cyclic
9

10 """
11

12 import logging
13 import time
14

15 import can
16

17 logging.basicConfig(level=logging.INFO)
18

19

20 def simple_periodic_send(bus):
21 """
22 Sends a message every 20ms with no explicit timeout
23 Sleeps for 2 seconds then stops the task.
24 """
25 print("Starting to send a message every 200ms for 2s")
26 msg = can.Message(
27 arbitration_id=0x123, data=[1, 2, 3, 4, 5, 6], is_extended_id=False
28)
29 task = bus.send_periodic(msg, 0.20)
30 assert isinstance(task, can.CyclicSendTaskABC)
31 time.sleep(2)
32 task.stop()
33 print("stopped cyclic send")
34

35

36 def limited_periodic_send(bus):
37 """Send using LimitedDurationCyclicSendTaskABC."""
38 print("Starting to send a message every 200ms for 1s")
39 msg = can.Message(
40 arbitration_id=0x12345678, data=[0, 0, 0, 0, 0, 0], is_extended_id=True
41)
42 task = bus.send_periodic(msg, 0.20, 1, store_task=False)
43 if not isinstance(task, can.LimitedDurationCyclicSendTaskABC):
44 print("This interface doesn't seem to support LimitedDurationCyclicSendTaskABC")
45 task.stop()

(continues on next page)

42 Chapter 3. Library API

python-can, Release 4.3.1

(continued from previous page)

46 return
47

48 time.sleep(2)
49 print("Cyclic send should have stopped as duration expired")
50 # Note the (finished) task will still be tracked by the Bus
51 # unless we pass `store_task=False` to bus.send_periodic
52 # alternatively calling stop removes the task from the bus
53 # task.stop()
54

55

56 def test_periodic_send_with_modifying_data(bus):
57 """Send using ModifiableCyclicTaskABC."""
58 print("Starting to send a message every 200ms. Initial data is four consecutive 1s")
59 msg = can.Message(arbitration_id=0x0CF02200, data=[1, 1, 1, 1])
60 task = bus.send_periodic(msg, 0.20)
61 if not isinstance(task, can.ModifiableCyclicTaskABC):
62 print("This interface doesn't seem to support modification")
63 task.stop()
64 return
65 time.sleep(2)
66 print("Changing data of running task to begin with 99")
67 msg.data[0] = 0x99
68 task.modify_data(msg)
69 time.sleep(2)
70

71 task.stop()
72 print("stopped cyclic send")
73 print("Changing data of stopped task to single ff byte")
74 msg.data = bytearray([0xFF])
75 msg.dlc = 1
76 task.modify_data(msg)
77 time.sleep(1)
78 print("starting again")
79 task.start()
80 time.sleep(1)
81 task.stop()
82 print("done")
83

84

85 # Will have to consider how to expose items like this. The socketcan
86 # interfaces will continue to support it... but the top level api won't.
87 # def test_dual_rate_periodic_send():
88 # """Send a message 10 times at 1ms intervals, then continue to send every 500ms"""
89 # msg = can.Message(arbitration_id=0x123, data=[0, 1, 2, 3, 4, 5])
90 # print("Creating cyclic task to send message 10 times at 1ms, then every 500ms")
91 # task = can.interface.MultiRateCyclicSendTask('vcan0', msg, 10, 0.001, 0.50)
92 # time.sleep(2)
93 #
94 # print("Changing data[0] = 0x42")
95 # msg.data[0] = 0x42
96 # task.modify_data(msg)
97 # time.sleep(2)

(continues on next page)

3.6. Broadcast Manager 43

python-can, Release 4.3.1

(continued from previous page)

98 #
99 # task.stop()

100 # print("stopped cyclic send")
101 #
102 # time.sleep(2)
103 #
104 # task.start()
105 # print("starting again")
106 # time.sleep(2)
107 # task.stop()
108 # print("done")
109

110

111 def main():
112 """Test different cyclic sending tasks."""
113 reset_msg = can.Message(
114 arbitration_id=0x00, data=[0, 0, 0, 0, 0, 0], is_extended_id=False
115)
116

117 # this uses the default configuration (for example from environment variables, or a
118 # config file) see https://python-can.readthedocs.io/en/stable/configuration.html
119 with can.Bus() as bus:
120 bus.send(reset_msg)
121

122 simple_periodic_send(bus)
123

124 bus.send(reset_msg)
125

126 limited_periodic_send(bus)
127

128 test_periodic_send_with_modifying_data(bus)
129

130 # print("Carrying out multirate cyclic test for {} interface".format(interface))
131 # can.rc['interface'] = interface
132 # test_dual_rate_periodic_send()
133

134 time.sleep(2)
135

136

137 if __name__ == "__main__":
138 main()

44 Chapter 3. Library API

python-can, Release 4.3.1

3.6.1 Message Sending Tasks

The class based api for the broadcast manager uses a series of mixin classes. All mixins inherit from
CyclicSendTaskABC which inherits from CyclicTask .

class can.broadcastmanager.CyclicTask

Abstract Base for all cyclic tasks.

abstract stop()

Cancel this periodic task.

Raises
CanError – If stop is called on an already stopped task.

Return type
None

class can.broadcastmanager.CyclicSendTaskABC(messages, period)
Message send task with defined period

Parameters

• messages (Sequence[Message] | Message) – The messages to be sent periodically.

• period (float) – The rate in seconds at which to send the messages.

Raises
ValueError – If the given messages are invalid

class can.broadcastmanager.LimitedDurationCyclicSendTaskABC(messages, period, duration)
Message send task with a defined duration and period.

Parameters

• messages (Sequence[Message] | Message) – The messages to be sent periodically.

• period (float) – The rate in seconds at which to send the messages.

• duration (float | None) – Approximate duration in seconds to continue sending mes-
sages. If no duration is provided, the task will continue indefinitely.

Raises
ValueError – If the given messages are invalid

class can.broadcastmanager.MultiRateCyclicSendTaskABC(channel, messages, count, initial_period,
subsequent_period)

A Cyclic send task that supports switches send frequency after a set time.

Transmits a message count times at initial_period then continues to transmit messages at subsequent_period.

Parameters

• channel (int | str) – See interface specific documentation.

• messages (Sequence[Message] | Message)

• count (int)

• initial_period (float)

• subsequent_period (float)

Raises
ValueError – If the given messages are invalid

3.6. Broadcast Manager 45

https://www.ianlewis.org/en/mixins-and-python
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

python-can, Release 4.3.1

class can.ModifiableCyclicTaskABC(messages, period)

Parameters

• messages (Sequence[Message] | Message) – The messages to be sent periodically.

• period (float) – The rate in seconds at which to send the messages.

Raises
ValueError – If the given messages are invalid

modify_data(messages)
Update the contents of the periodically sent messages, without altering the timing.

Parameters
messages (Sequence[Message] | Message) – The messages with the new Message.
data.

Note: The arbitration ID cannot be changed.

Note: The number of new cyclic messages to be sent must be equal to the original number of
messages originally specified for this task.

Raises
ValueError – If the given messages are invalid

Return type
None

class can.RestartableCyclicTaskABC(messages, period)
Adds support for restarting a stopped cyclic task

Parameters

• messages (Sequence[Message] | Message) – The messages to be sent periodically.

• period (float) – The rate in seconds at which to send the messages.

Raises
ValueError – If the given messages are invalid

abstract start()

Restart a stopped periodic task.

Return type
None

class can.broadcastmanager.ThreadBasedCyclicSendTask(bus, lock, messages, period, duration=None,
on_error=None, modifier_callback=None)

Fallback cyclic send task using daemon thread.

Transmits messages with a period seconds for duration seconds on a bus.

The on_error is called if any error happens on bus while sending messages. If on_error present, and returns
False when invoked, thread is stopped immediately, otherwise, thread continuously tries to send messages ig-
noring errors on a bus. Absence of on_error means that thread exits immediately on error.

Parameters

• on_error (Callable[[Exception], bool] | None) – The callable that accepts an ex-
ception if any error happened on a bus while sending messages, it shall return either True
or False depending on desired behaviour of ThreadBasedCyclicSendTask.

• bus (BusABC)

46 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

• lock (allocate_lock)

• messages (Sequence[Message] | Message)

• period (float)

• duration (float | None)

• modifier_callback (Callable[[Message], None] | None)

Raises
ValueError – If the given messages are invalid

start()

Restart a stopped periodic task.

Return type
None

stop()

Cancel this periodic task.

Raises
CanError – If stop is called on an already stopped task.

Return type
None

3.7 Error Handling

There are several specific Exception classes to allow user code to react to specific scenarios related to CAN busses:

Exception (Python standard library)
+-- ...
+-- CanError (python-can)

+-- CanInterfaceNotImplementedError
+-- CanInitializationError
+-- CanOperationError
+-- CanTimeoutError

Keep in mind that some functions and methods may raise different exceptions. For example, validating typical argu-
ments and parameters might result in a ValueError. This should always be documented for the function at hand.

exception can.exceptions.CanError(message='', error_code=None)
Bases: Exception

Base class for all CAN related exceptions.

If specified, the error code is automatically appended to the message:

>>> # With an error code (it also works with a specific error):
>>> error = CanOperationError(message="Failed to do the thing", error_code=42)
>>> str(error)
'Failed to do the thing [Error Code 42]'
>>>
>>> # Missing the error code:
>>> plain_error = CanError(message="Something went wrong ...")

(continues on next page)

3.7. Error Handling 47

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#Exception

python-can, Release 4.3.1

(continued from previous page)

>>> str(plain_error)
'Something went wrong ...'

Parameters

• error_code (int | None) – An optional error code to narrow down the cause of the fault

• error_code – An optional error code to narrow down the cause of the fault

• message (str)

Return type
None

exception can.exceptions.CanInitializationError(message='', error_code=None)
Bases: CanError

Indicates an error the occurred while initializing a can.BusABC.

If initialization fails due to a driver or platform missing/being unsupported, a
CanInterfaceNotImplementedError is raised instead. If initialization fails due to a value being out
of range, a ValueError is raised.

Example scenarios:

• Try to open a non-existent device and/or channel

• Try to use an invalid setting, which is ok by value, but not ok for the interface

• The device or other resources are already used

Parameters

• message (str)

• error_code (int | None)

Return type
None

exception can.exceptions.CanInterfaceNotImplementedError(message='', error_code=None)
Bases: CanError, NotImplementedError

Indicates that the interface is not supported on the current platform.

Example scenarios:

• No interface with that name exists

• The interface is unsupported on the current operating system or interpreter

• The driver could not be found or has the wrong version

Parameters

• message (str)

• error_code (int | None)

Return type
None

48 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

exception can.exceptions.CanOperationError(message='', error_code=None)
Bases: CanError

Indicates an error while in operation.

Example scenarios:

• A call to a library function results in an unexpected return value

• An invalid message was received

• The driver rejected a message that was meant to be sent

• Cyclic redundancy check (CRC) failed

• A message remained unacknowledged

• A buffer is full

Parameters

• message (str)

• error_code (int | None)

Return type
None

exception can.exceptions.CanTimeoutError(message='', error_code=None)
Bases: CanError, TimeoutError

Indicates the timeout of an operation.

Example scenarios:

• Some message could not be sent after the timeout elapsed

• No message was read within the given time

Parameters

• message (str)

• error_code (int | None)

Return type
None

can.exceptions.error_check(error_message=None, exception_type=<class
'can.exceptions.CanOperationError'>)

Catches any exceptions and turns them into the new type while preserving the stack trace.

Parameters

• error_message (str | None)

• exception_type (Type[CanError])

Return type
Generator[None, None, None]

3.7. Error Handling 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Type
https://docs.python.org/3/library/collections.abc.html#collections.abc.Generator

python-can, Release 4.3.1

3.8 Bit Timing Configuration

Attention: This feature is experimental. The implementation might change in future versions.

The CAN protocol, specified in ISO 11898, allows the bitrate, sample point and number of samples to be optimized
for a given application. These parameters, known as bit timings, can be adjusted to meet the requirements of the
communication system and the physical communication channel.

These parameters include:

• tseg1: The time segment 1 (TSEG1) is the amount of time from the end of the sync segment until the sample
point. It is expressed in time quanta (TQ).

• tseg2: The time segment 2 (TSEG2) is the amount of time from the sample point until the end of the bit. It is
expressed in TQ.

• sjw: The synchronization jump width (SJW) is the maximum number of TQ that the controller can resynchronize
every bit.

• sample point: The sample point is defined as the point in time within a bit where the bus controller samples the
bus for dominant or recessive levels. It is typically expressed as a percentage of the bit time. The sample point
depends on the bus length and propagation time as well as the information processing time of the nodes.

Fig. 1: Bit Timing and Sample Point

For example, consider a bit with a total duration of 8 TQ and a sample point at 75%. The values for TSEG1, TSEG2
and SJW would be 5, 2, and 2, respectively. The sample point would be 6 TQ after the start of the bit, leaving 2 TQ for
the information processing by the bus nodes.

Note: The values for TSEG1, TSEG2 and SJW are chosen such that the sample point is at least 50% of the total bit
time. This ensures that there is sufficient time for the signal to stabilize before it is sampled.

Note: In CAN FD, the arbitration (nominal) phase and the data phase can have different bit rates. As a result, there
are two separate sample points to consider.

Another important parameter is f_clock: The CAN system clock frequency in Hz. This frequency is used to derive
the TQ size from the bit rate. The relationship is f_clock = (tseg1+tseg2+1) * bitrate * brp. The bit rate
prescaler value brp is usually determined by the controller and is chosen to ensure that the resulting bit time is an
integer value. Typical CAN clock frequencies are 8-80 MHz.

In most cases, the recommended settings for a predefined set of common bit rates will work just fine. In some cases,
however, it may be necessary to specify custom bit timings. The BitTiming and BitTimingFd classes can be used
for this purpose to specify bit timings in a relatively interface agnostic manner.

BitTiming or BitTimingFd can also help you to produce an overview of possible bit timings for your desired bit rate:

>>> import contextlib
>>> import can
...
>>> timings = set()

(continues on next page)

50 Chapter 3. Library API

python-can, Release 4.3.1

(continued from previous page)

>>> for sample_point in range(50, 100):
... with contextlib.suppress(ValueError):
... timings.add(
... can.BitTiming.from_sample_point(
... f_clock=8_000_000,
... bitrate=250_000,
... sample_point=sample_point,
...)
...)
...
>>> for timing in sorted(timings, key=lambda x: x.sample_point):
... print(timing)
BR: 250_000 bit/s, SP: 50.00%, BRP: 2, TSEG1: 7, TSEG2: 8, SJW: 4, BTR: C176h, CLK: 8MHz
BR: 250_000 bit/s, SP: 56.25%, BRP: 2, TSEG1: 8, TSEG2: 7, SJW: 4, BTR: C167h, CLK: 8MHz
BR: 250_000 bit/s, SP: 62.50%, BRP: 2, TSEG1: 9, TSEG2: 6, SJW: 4, BTR: C158h, CLK: 8MHz
BR: 250_000 bit/s, SP: 68.75%, BRP: 2, TSEG1: 10, TSEG2: 5, SJW: 4, BTR: C149h, CLK: 8MHz
BR: 250_000 bit/s, SP: 75.00%, BRP: 2, TSEG1: 11, TSEG2: 4, SJW: 4, BTR: C13Ah, CLK: 8MHz
BR: 250_000 bit/s, SP: 81.25%, BRP: 2, TSEG1: 12, TSEG2: 3, SJW: 3, BTR: 812Bh, CLK: 8MHz
BR: 250_000 bit/s, SP: 87.50%, BRP: 2, TSEG1: 13, TSEG2: 2, SJW: 2, BTR: 411Ch, CLK: 8MHz
BR: 250_000 bit/s, SP: 93.75%, BRP: 2, TSEG1: 14, TSEG2: 1, SJW: 1, BTR: 010Dh, CLK: 8MHz

It is possible to specify CAN 2.0 bit timings using the config file:

[default]
f_clock=8000000
brp=1
tseg1=5
tseg2=2
sjw=1
nof_samples=1

The same is possible for CAN FD:

[default]
f_clock=80000000
nom_brp=1
nom_tseg1=119
nom_tseg2=40
nom_sjw=40
data_brp=1
data_tseg1=29
data_tseg2=10
data_sjw=10

A dict of the relevant config parameters can be easily obtained by calling dict(timing) or {**timing} where
timing is the BitTiming or BitTimingFd instance.

Check Configuration for more information about saving and loading configurations.

class can.BitTiming(f_clock, brp, tseg1, tseg2, sjw, nof_samples=1, strict=False)
Bases: Mapping

Representation of a bit timing configuration for a CAN 2.0 bus.

3.8. Bit Timing Configuration 51

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Mapping

python-can, Release 4.3.1

The class can be constructed in multiple ways, depending on the information available. The preferred way is
using CAN clock frequency, prescaler, tseg1, tseg2 and sjw:

can.BitTiming(f_clock=8_000_000, brp=1, tseg1=5, tseg2=1, sjw=1)

Alternatively you can set the bitrate instead of the bit rate prescaler:

can.BitTiming.from_bitrate_and_segments(
f_clock=8_000_000, bitrate=1_000_000, tseg1=5, tseg2=1, sjw=1

)

It is also possible to specify BTR registers:

can.BitTiming.from_registers(f_clock=8_000_000, btr0=0x00, btr1=0x14)

or to calculate the timings for a given sample point:

can.BitTiming.from_sample_point(f_clock=8_000_000, bitrate=1_000_000, sample_
→˓point=75.0)

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• brp (int) – Bit rate prescaler.

• tseg1 (int) – Time segment 1, that is, the number of quanta from (but not including) the
Sync Segment to the sampling point.

• tseg2 (int) – Time segment 2, that is, the number of quanta from the sampling point to the
end of the bit.

• sjw (int) – The Synchronization Jump Width. Decides the maximum number of time quanta
that the controller can resynchronize every bit.

• nof_samples (int) – Either 1 or 3. Some CAN controllers can also sample each bit three
times. In this case, the bit will be sampled three quanta in a row, with the last sample be-
ing taken in the edge between TSEG1 and TSEG2. Three samples should only be used for
relatively slow baudrates.

• strict (bool) – If True, restrict bit timings to the minimum required range as defined in
ISO 11898. This can be used to ensure compatibility across a wide variety of CAN hardware.

Raises
ValueError – if the arguments are invalid.

classmethod from_bitrate_and_segments(f_clock, bitrate, tseg1, tseg2, sjw, nof_samples=1,
strict=False)

Create a BitTiming instance from bitrate and segment lengths.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• bitrate (int) – Bitrate in bit/s.

• tseg1 (int) – Time segment 1, that is, the number of quanta from (but not including) the
Sync Segment to the sampling point.

• tseg2 (int) – Time segment 2, that is, the number of quanta from the sampling point to
the end of the bit.

52 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• sjw (int) – The Synchronization Jump Width. Decides the maximum number of time
quanta that the controller can resynchronize every bit.

• nof_samples (int) – Either 1 or 3. Some CAN controllers can also sample each bit three
times. In this case, the bit will be sampled three quanta in a row, with the last sample being
taken in the edge between TSEG1 and TSEG2. Three samples should only be used for
relatively slow baudrates.

• strict (bool) – If True, restrict bit timings to the minimum required range as defined
in ISO 11898. This can be used to ensure compatibility across a wide variety of CAN
hardware.

Raises
ValueError – if the arguments are invalid.

Return type
BitTiming

classmethod from_registers(f_clock, btr0, btr1)
Create a BitTiming instance from registers btr0 and btr1.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• btr0 (int) – The BTR0 register value used by many CAN controllers.

• btr1 (int) – The BTR1 register value used by many CAN controllers.

Raises
ValueError – if the arguments are invalid.

Return type
BitTiming

classmethod iterate_from_sample_point(f_clock, bitrate, sample_point=69.0)
Create a BitTiming iterator with all the solutions for a sample point.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• bitrate (int) – Bitrate in bit/s.

• sample_point (int) – The sample point value in percent.

Raises
ValueError – if the arguments are invalid.

Return type
Iterator[BitTiming]

classmethod from_sample_point(f_clock, bitrate, sample_point=69.0)
Create a BitTiming instance for a sample point.

This function tries to find bit timings, which are close to the requested sample point. It does not take
physical bus properties into account, so the calculated bus timings might not work properly for you.

The oscillator_tolerance() function might be helpful to evaluate the bus timings.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• bitrate (int) – Bitrate in bit/s.

3.8. Bit Timing Configuration 53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• sample_point (int) – The sample point value in percent.

Raises
ValueError – if the arguments are invalid.

Return type
BitTiming

property f_clock: int

The CAN system clock frequency in Hz.

property bitrate: int

Bitrate in bits/s.

property brp: int

Bit Rate Prescaler.

property tq: int

Time quantum in nanoseconds

property nbt: int

Nominal Bit Time.

property tseg1: int

Time segment 1.

The number of quanta from (but not including) the Sync Segment to the sampling point.

property tseg2: int

Time segment 2.

The number of quanta from the sampling point to the end of the bit.

property sjw: int

Synchronization Jump Width.

property nof_samples: int

Number of samples (1 or 3).

property sample_point: float

Sample point in percent.

property btr0: int

Bit timing register 0 for SJA1000.

property btr1: int

Bit timing register 1 for SJA1000.

oscillator_tolerance(node_loop_delay_ns=250.0, bus_length_m=10.0)
Oscillator tolerance in percent according to ISO 11898-1.

Parameters

• node_loop_delay_ns (float) – Transceiver loop delay in nanoseconds.

• bus_length_m (float) – Bus length in meters.

Return type
float

54 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

recreate_with_f_clock(f_clock)
Return a new BitTiming instance with the given f_clock but the same bit rate and sample point.

Parameters
f_clock (int) – The CAN system clock frequency in Hz.

Raises
ValueError – if no suitable bit timings were found.

Return type
BitTiming

class can.BitTimingFd(f_clock, nom_brp, nom_tseg1, nom_tseg2, nom_sjw, data_brp, data_tseg1, data_tseg2,
data_sjw, strict=False)

Bases: Mapping

Representation of a bit timing configuration for a CAN FD bus.

The class can be constructed in multiple ways, depending on the information available. The preferred way is
using CAN clock frequency, bit rate prescaler, tseg1, tseg2 and sjw for both the arbitration (nominal) and data
phase:

can.BitTimingFd(
f_clock=80_000_000,
nom_brp=1,
nom_tseg1=59,
nom_tseg2=20,
nom_sjw=10,
data_brp=1,
data_tseg1=6,
data_tseg2=3,
data_sjw=2,

)

Alternatively you can set the bit rates instead of the bit rate prescalers:

can.BitTimingFd.from_bitrate_and_segments(
f_clock=80_000_000,
nom_bitrate=1_000_000,
nom_tseg1=59,
nom_tseg2=20,
nom_sjw=10,
data_bitrate=8_000_000,
data_tseg1=6,
data_tseg2=3,
data_sjw=2,

)

It is also possible to calculate the timings for a given pair of arbitration and data sample points:

can.BitTimingFd.from_sample_point(
f_clock=80_000_000,
nom_bitrate=1_000_000,
nom_sample_point=75.0,
data_bitrate=8_000_000,
data_sample_point=70.0,

)

3.8. Bit Timing Configuration 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Mapping

python-can, Release 4.3.1

Initialize a BitTimingFd instance with the specified parameters.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• nom_brp (int) – Nominal (arbitration) phase bitrate prescaler.

• nom_tseg1 (int) – Nominal phase Time segment 1, that is, the number of quanta from (but
not including) the Sync Segment to the sampling point.

• nom_tseg2 (int) – Nominal phase Time segment 2, that is, the number of quanta from the
sampling point to the end of the bit.

• nom_sjw (int) – The Synchronization Jump Width for the nominal phase. This value de-
termines the maximum number of time quanta that the controller can resynchronize every
bit.

• data_brp (int) – Data phase bitrate prescaler.

• data_tseg1 (int) – Data phase Time segment 1, that is, the number of quanta from (but
not including) the Sync Segment to the sampling point.

• data_tseg2 (int) – Data phase Time segment 2, that is, the number of quanta from the
sampling point to the end of the bit.

• data_sjw (int) – The Synchronization Jump Width for the data phase. This value deter-
mines the maximum number of time quanta that the controller can resynchronize every bit.

• strict (bool) – If True, restrict bit timings to the minimum required range as defined in
ISO 11898. This can be used to ensure compatibility across a wide variety of CAN hardware.

Raises
ValueError – if the arguments are invalid.

classmethod from_bitrate_and_segments(f_clock, nom_bitrate, nom_tseg1, nom_tseg2, nom_sjw,
data_bitrate, data_tseg1, data_tseg2, data_sjw,
strict=False)

Create a BitTimingFd instance with the bitrates and segments lengths.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• nom_bitrate (int) – Nominal (arbitration) phase bitrate in bit/s.

• nom_tseg1 (int) – Nominal phase Time segment 1, that is, the number of quanta from
(but not including) the Sync Segment to the sampling point.

• nom_tseg2 (int) – Nominal phase Time segment 2, that is, the number of quanta from
the sampling point to the end of the bit.

• nom_sjw (int) – The Synchronization Jump Width for the nominal phase. This value
determines the maximum number of time quanta that the controller can resynchronize every
bit.

• data_bitrate (int) – Data phase bitrate in bit/s.

• data_tseg1 (int) – Data phase Time segment 1, that is, the number of quanta from (but
not including) the Sync Segment to the sampling point.

• data_tseg2 (int) – Data phase Time segment 2, that is, the number of quanta from the
sampling point to the end of the bit.

56 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• data_sjw (int) – The Synchronization Jump Width for the data phase. This value de-
termines the maximum number of time quanta that the controller can resynchronize every
bit.

• strict (bool) – If True, restrict bit timings to the minimum required range as defined
in ISO 11898. This can be used to ensure compatibility across a wide variety of CAN
hardware.

Raises
ValueError – if the arguments are invalid.

Return type
BitTimingFd

classmethod iterate_from_sample_point(f_clock, nom_bitrate, nom_sample_point, data_bitrate,
data_sample_point)

Create an BitTimingFd iterator with all the solutions for a sample point.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• nom_bitrate (int) – Nominal bitrate in bit/s.

• nom_sample_point (int) – The sample point value of the arbitration phase in percent.

• data_bitrate (int) – Data bitrate in bit/s.

• data_sample_point (int) – The sample point value of the data phase in percent.

Raises
ValueError – if the arguments are invalid.

Return type
Iterator[BitTimingFd]

classmethod from_sample_point(f_clock, nom_bitrate, nom_sample_point, data_bitrate,
data_sample_point)

Create a BitTimingFd instance for a sample point.

This function tries to find bit timings, which are close to the requested sample points. It does not take
physical bus properties into account, so the calculated bus timings might not work properly for you.

The oscillator_tolerance() function might be helpful to evaluate the bus timings.

Parameters

• f_clock (int) – The CAN system clock frequency in Hz.

• nom_bitrate (int) – Nominal bitrate in bit/s.

• nom_sample_point (int) – The sample point value of the arbitration phase in percent.

• data_bitrate (int) – Data bitrate in bit/s.

• data_sample_point (int) – The sample point value of the data phase in percent.

Raises
ValueError – if the arguments are invalid.

Return type
BitTimingFd

3.8. Bit Timing Configuration 57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

python-can, Release 4.3.1

property f_clock: int

The CAN system clock frequency in Hz.

property nom_bitrate: int

Nominal (arbitration phase) bitrate.

property nom_brp: int

Prescaler value for the arbitration phase.

property nom_tq: int

Nominal time quantum in nanoseconds

property nbt: int

Number of time quanta in a bit of the arbitration phase.

property nom_tseg1: int

Time segment 1 value of the arbitration phase.

This is the sum of the propagation time segment and the phase buffer segment 1.

property nom_tseg2: int

Time segment 2 value of the arbitration phase. Also known as phase buffer segment 2.

property nom_sjw: int

Synchronization jump width of the arbitration phase.

The phase buffer segments may be shortened or lengthened by this value.

property nom_sample_point: float

Sample point of the arbitration phase in percent.

property data_bitrate: int

Bitrate of the data phase in bit/s.

property data_brp: int

Prescaler value for the data phase.

property data_tq: int

Data time quantum in nanoseconds

property dbt: int

Number of time quanta in a bit of the data phase.

property data_tseg1: int

TSEG1 value of the data phase.

This is the sum of the propagation time segment and the phase buffer segment 1.

property data_tseg2: int

TSEG2 value of the data phase. Also known as phase buffer segment 2.

property data_sjw: int

Synchronization jump width of the data phase.

The phase buffer segments may be shortened or lengthened by this value.

property data_sample_point: float

Sample point of the data phase in percent.

58 Chapter 3. Library API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

oscillator_tolerance(node_loop_delay_ns=250.0, bus_length_m=10.0)
Oscillator tolerance in percent according to ISO 11898-1.

Parameters

• node_loop_delay_ns (float) – Transceiver loop delay in nanoseconds.

• bus_length_m (float) – Bus length in meters.

Return type
float

recreate_with_f_clock(f_clock)
Return a new BitTimingFd instance with the given f_clock but the same bit rates and sample points.

Parameters
f_clock (int) – The CAN system clock frequency in Hz.

Raises
ValueError – if no suitable bit timings were found.

Return type
BitTimingFd

3.9 Utilities

can.detect_available_configs(interfaces=None)
Detect all configurations/channels that the interfaces could currently connect with.

This might be quite time-consuming.

Automated configuration detection may not be implemented by every interface on every platform. This method
will not raise an error in that case, but with rather return an empty list for that interface.

Parameters
interfaces (None | str | Iterable[str]) – either - the name of an interface to be
searched in as a string, - an iterable of interface names to search in, or - None to search in all
known interfaces.

Return type
list[dict]

Returns
an iterable of dicts, each suitable for usage in the constructor of can.BusABC.

3.10 Internal API

Here we document the odds and ends that are more helpful for creating your own interfaces or listeners but generally
shouldn’t be required to interact with python-can.

3.9. Utilities 59

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

python-can, Release 4.3.1

3.10.1 BusABC

The BusABC class, as the name suggests, provides an abstraction of a CAN bus. The bus provides a wrapper around a
physical or virtual CAN Bus.

An interface specific instance of the BusABC is created by the Bus class, see Bus for the user facing API.

3.10.2 Extending the BusABC class

Concrete implementations must implement the following:

• send() to send individual messages

• _recv_internal() to receive individual messages (see note below!)

• set the channel_info attribute to a string describing the underlying bus and/or channel

They might implement the following:

• flush_tx_buffer() to allow discarding any messages yet to be sent

• shutdown() to override how the bus should shut down

• _send_periodic_internal() to override the software based periodic sending and push it down to the
kernel or hardware.

• _apply_filters() to apply efficient filters to lower level systems like the OS kernel or hardware.

• _detect_available_configs() to allow the interface to report which configurations are currently avail-
able for new connections.

• state() property to allow reading and/or changing the bus state.

Note: TL;DR: Only override _recv_internal(), never recv() directly.

Previously, concrete bus classes had to override recv() directly instead of _recv_internal(), but that has changed to
allow the abstract base class to handle in-software message filtering as a fallback. All internal interfaces now implement
that new behaviour. Older (custom) interfaces might still be implemented like that and thus might not provide message
filtering:

Concrete instances are usually created by can.Bus() which takes the users configuration into account.

Bus Internals

Several methods are not documented in the main can.BusABC as they are primarily useful for library developers as
opposed to library users.

abstract BusABC.__init__(channel, can_filters=None, **kwargs)
Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters as it handles generic tasks like applying
filters.

Parameters

• channel (Any) – The can interface identifier. Expected type is backend dependent.

• can_filters (Sequence[CanFilter | CanFilterExtended] | None) – See
set_filters() for details.

60 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Sequence

python-can, Release 4.3.1

• kwargs (dict) – Any backend dependent configurations are passed in this dictionary

Raises

• ValueError – If parameters are out of range

• CanInterfaceNotImplementedError – If the driver cannot be accessed

• CanInitializationError – If the bus cannot be initialized

BusABC.__iter__()

Allow iteration on messages as they are received.

for msg in bus:
print(msg)

Yields
Message msg objects.

Return type
Iterator[Message]

BusABC.__str__()

Return str(self).

Return type
str

BusABC.__weakref__

list of weak references to the object (if defined)

BusABC._recv_internal(timeout)
Read a message from the bus and tell whether it was filtered. This methods may be called by recv() to read a
message multiple times if the filters set by set_filters() do not match and the call has not yet timed out.

New implementations should always override this method instead of recv(), to be able to take advantage of the
software based filtering provided by recv() as a fallback. This method should never be called directly.

Note: This method is not an @abstractmethod (for now) to allow older external implementations to continue
using their existing recv() implementation.

Note: The second return value (whether filtering was already done) may change over time for some interfaces,
like for example in the Kvaser interface. Thus it cannot be simplified to a constant value.

Parameters
timeout (float) – seconds to wait for a message, see send()

Returns

1. a message that was read or None on timeout

2. a bool that is True if message filtering has already been done and else False

Raises

• CanOperationError – If an error occurred while reading

3.10. Internal API 61

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

• NotImplementedError – if the bus provides it’s own recv() implementation (legacy im-
plementation)

Return type
Tuple[Message | None, bool]

BusABC._apply_filters(filters)
Hook for applying the filters to the underlying kernel or hardware if supported/implemented by the interface.

Parameters
filters (Sequence[CanFilter | CanFilterExtended] | None) – See set_filters()
for details.

Return type
None

BusABC._send_periodic_internal(msgs, period, duration=None, modifier_callback=None)
Default implementation of periodic message sending using threading.

Override this method to enable a more efficient backend specific approach.

Parameters

• msgs (Sequence[Message] | Message) – Messages to transmit

• period (float) – Period in seconds between each message

• duration (float | None) – The duration between sending each message at the given rate.
If no duration is provided, the task will continue indefinitely.

• modifier_callback (Callable[[Message], None] | None)

Returns
A started task instance. Note the task can be stopped (and depending on the backend modified)
by calling the stop() method.

Return type
CyclicSendTaskABC

static BusABC._detect_available_configs()

Detect all configurations/channels that this interface could currently connect with.

This might be quite time consuming.

May not to be implemented by every interface on every platform.

Returns
an iterable of dicts, each being a configuration suitable for usage in the interface’s bus constructor.

Return type
List[AutoDetectedConfig]

62 Chapter 3. Library API

https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.List

python-can, Release 4.3.1

3.10.3 About the IO module

Handling of the different file formats is implemented in can.io. Each file/IO type is within a separate module and
ideally implements both a Reader and a Writer. The reader usually extends can.io.generic.BaseIOHandler, while
the writer often additionally extends can.Listener, to be able to be passed directly to a can.Notifier.

Adding support for new file formats

This assumes that you want to add a new file format, called canstore. Ideally add both reading and writing support for
the new file format, although this is not strictly required.

1. Create a new module: can/io/canstore.py (or simply copy some existing one like can/io/csv.py)

2. Implement a reader CanstoreReader (which often extends can.io.generic.BaseIOHandler, but does not
have to). Besides from a constructor, only __iter__(self) needs to be implemented.

3. Implement a writer CanstoreWriter (which often extends can.io.generic.BaseIOHandler and can.
Listener, but does not have to). Besides from a constructor, only on_message_received(self, msg) needs
to be implemented.

4. Add a case to can.io.player.LogReader’s __new__().

5. Document the two new classes (and possibly additional helpers) with docstrings and comments. Please mention
features and limitations of the implementation.

6. Add a short section to the bottom of doc/listeners.rst.

7. Add tests where appropriate, for example by simply adding a test case called class TestCanstoreFileFor-
mat(ReaderWriterTest) to test/logformats_test.py. That should already handle all of the general testing. Just
follow the way the other tests in there do it.

8. Add imports to can/__init__py and can/io/__init__py so that the new classes can be simply imported as from can
import CanstoreReader, CanstoreWriter.

IO Utilities

Contains generic base classes for file IO.

class can.io.generic.BaseIOHandler(file, mode='rt', **kwargs)
A generic file handler that can be used for reading and writing.

Can be used as a context manager.

Attr file
the file-like object that is kept internally, or None if none was opened

Parameters

• file (TextIO | BinaryIO | GzipFile | None) – a path-like object to open a file, a
file-like object to be used as a file or None to not use a file at all

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

stop()

Closes the underlying file-like object and flushes it, if it was opened in write mode.

Return type
None

3.10. Internal API 63

https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

class can.io.generic.MessageWriter(file, mode='rt', **kwargs)
The base class for all writers.

Parameters

• file (TextIO | BinaryIO | GzipFile | None) – a path-like object to open a file, a
file-like object to be used as a file or None to not use a file at all

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

class can.io.generic.FileIOMessageWriter(file, mode='wt', **kwargs)
A specialized base class for all writers with file descriptors.

Parameters

• file (TextIO | BinaryIO | GzipFile) – a path-like object to open a file, a file-like
object to be used as a file or None to not use a file at all

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

file_size()

Return an estimate of the current file size in bytes.

Return type
int

class can.io.generic.TextIOMessageWriter(file, mode='wt', **kwargs)

Parameters

• file (TextIO) – a path-like object to open a file, a file-like object to be used as a file or
None to not use a file at all

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

class can.io.generic.BinaryIOMessageWriter(file, mode='wt', **kwargs)

Parameters

• file (BinaryIO | GzipFile) – a path-like object to open a file, a file-like object to be
used as a file or None to not use a file at all

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

class can.io.generic.MessageReader(file, mode='rt', **kwargs)
The base class for all readers.

Parameters

• file (TextIO | BinaryIO | GzipFile | None) – a path-like object to open a file, a
file-like object to be used as a file or None to not use a file at all

64 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile

python-can, Release 4.3.1

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

class can.io.generic.TextIOMessageReader(file, mode='rt', **kwargs)

Parameters

• file (TextIO) – a path-like object to open a file, a file-like object to be used as a file or
None to not use a file at all

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

class can.io.generic.BinaryIOMessageReader(file, mode='rt', **kwargs)

Parameters

• file (BinaryIO | GzipFile) – a path-like object to open a file, a file-like object to be
used as a file or None to not use a file at all

• mode (str) – the mode that should be used to open the file, see open(), ignored if file is
None

• kwargs (Any)

3.10.4 Other Utilities

Utilities and configuration file parsing.

can.util.cast_from_string(string_val)
Perform trivial type conversion from str values.

Parameters
string_val (str) – the string, that shall be converted

Return type
str | int | float | bool

can.util.channel2int(channel)
Try to convert the channel to an integer.

Parameters
channel (str | int | None) – Channel string (e.g. “can0”, “CAN1”) or an integer

Returns
Channel integer or None if unsuccessful

Return type
int | None

can.util.check_or_adjust_timing_clock(timing, valid_clocks)
Adjusts the given timing instance to have an f_clock value that is within the allowed values specified by
valid_clocks. If the f_clock value of timing is already within valid_clocks, then timing is returned unchanged.

Parameters

• timing (T2) – The BitTiming or BitTimingFd instance to adjust.

3.10. Internal API 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• valid_clocks (Iterable[int]) – An iterable of integers representing the valid f_clock
values that the timing instance can be changed to. The order of the values in valid_clocks
determines the priority in which they are tried, with earlier values being tried before later
ones.

Returns
A new BitTiming or BitTimingFd instance with an f_clock value within valid_clocks.

Raises
CanInitializationError – If no compatible f_clock value can be found within valid_clocks.

Return type
T2

can.util.deprecated_args_alias(deprecation_start, deprecation_end=None, **aliases)
Allows to rename/deprecate a function kwarg(s) and optionally have the deprecated kwarg(s) set as alias(es)

Example:

@deprecated_args_alias("1.2.0", oldArg="new_arg", anotherOldArg="another_new_arg")
def library_function(new_arg, another_new_arg):

pass

@deprecated_args_alias(
deprecation_start="1.2.0",
deprecation_end="3.0.0",
oldArg="new_arg",
obsoleteOldArg=None,

)
def library_function(new_arg):

pass

Parameters

• deprecation_start (str) – The python-can version, that introduced the
DeprecationWarning.

• deprecation_end (str | None) – The python-can version, that marks the end of the dep-
recation period.

• aliases (str | None) – keyword arguments, that map the deprecated argument names to
the new argument names or None.

Return type
Callable[[Callable[[~P1], T1]], Callable[[~P1], T1]]

can.util.dlc2len(dlc)
Calculate the data length from DLC.

Parameters
dlc (int) – DLC (0-15)

Returns
Data length in number of bytes (0-64)

Return type
int

66 Chapter 3. Library API

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

can.util.len2dlc(length)
Calculate the DLC from data length.

Parameters
length (int) – Length in number of bytes (0-64)

Returns
DLC (0-15)

Return type
int

can.util.load_config(path=None, config=None, context=None)
Returns a dict with configuration details which is loaded from (in this order):

• config

• can.rc

• Environment variables CAN_INTERFACE, CAN_CHANNEL, CAN_BITRATE

• Config files /etc/can.conf or ~/.can or ~/.canrc where the latter may add or replace values of the
former.

Interface can be any of the strings from can.VALID_INTERFACES for example: kvaser, socketcan, pcan, usb2can,
ixxat, nican, virtual.

Note: The key bustype is copied to interface if that one is missing and does never appear in the result.

Parameters

• path (TextIO | BinaryIO | GzipFile | str | PathLike[str] | None) – Op-
tional path to config file.

• config (Dict[str, Any] | None) – A dict which may set the ‘interface’, and/or the
‘channel’, or neither. It may set other values that are passed through.

• context (str | None) – Extra ‘context’ pass to config sources. This can be used to section
other than ‘default’ in the configuration file.

Returns

A config dictionary that should contain ‘interface’ & ‘channel’:

{
'interface': 'python-can backend interface to use',
'channel': 'default channel to use',
possibly more

}

Note None will be used if all the options are exhausted without finding a value.

All unused values are passed from config over to this.

Raises
CanInterfaceNotImplementedError if the interface name isn’t recognized

Return type
BusConfig

3.10. Internal API 67

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

python-can, Release 4.3.1

can.util.load_environment_config(context=None)
Loads config dict from environmental variables (if set):

• CAN_INTERFACE

• CAN_CHANNEL

• CAN_BITRATE

• CAN_CONFIG

if context is supplied, “_{context}” is appended to the environment variable name we will look at. For example
if context=”ABC”:

• CAN_INTERFACE_ABC

• CAN_CHANNEL_ABC

• CAN_BITRATE_ABC

• CAN_CONFIG_ABC

Parameters
context (str | None)

Return type
Dict[str, str]

can.util.load_file_config(path=None, section='default')
Loads configuration from file with following content:

[default]
interface = socketcan
channel = can0

Parameters

• path (TextIO | BinaryIO | GzipFile | str | PathLike[str] | None) – path
to config file. If not specified, several sensible default locations are tried depending on plat-
form.

• section (str) – name of the section to read configuration from.

Return type
Dict[str, str]

can.util.set_logging_level(level_name)
Set the logging level for the “can” logger.

Parameters
level_name (str) – One of: ‘critical’, ‘error’, ‘warning’, ‘info’, ‘debug’, ‘subdebug’, or the
value None (=default). Defaults to ‘debug’.

Return type
None

can.util.time_perfcounter_correlation()

Get the perf_counter value nearest to when time.time() is updated

68 Chapter 3. Library API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/gzip.html#gzip.GzipFile
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

python-can, Release 4.3.1

Computed if the default timer used by time.time on this platform has a resolution higher than 10s, otherwise the
current time and perf_counter is directly returned. This was chosen as typical timer resolution on Linux/macOS
is ~1s, and the Windows platform can vary from ~500s to 10ms.

Note this value is based on when time.time() is observed to update from Python, it is not directly returned by the
operating system.

Returns
(t, performance_counter) time.time value and time.perf_counter value when the time.time is up-
dated

Return type
Tuple[float, float]

3.10. Internal API 69

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

70 Chapter 3. Library API

CHAPTER

FOUR

HARDWARE INTERFACES

python-can hides the low-level, device-specific interfaces to controller area network adapters in interface dependant
modules. However as each hardware device is different, you should carefully go through your interface’s documentation.

Note: The Interface Names are listed in Configuration.

The following hardware interfaces are included in python-can:

4.1 CANalyst-II

CANalyst-II is a USB to CAN Analyzer device produced by Chuangxin Technology.

Install: pip install "python-can[canalystii]"

4.1.1 Supported platform

Windows, Linux and Mac.

Note: The backend driver depends on pyusb so a pyusb backend driver library such as libusb must be installed. On
Windows a tool such as Zadig can be used to set the Canalyst-II USB device driver to libusb-win32.

4.1.2 Limitations

Multiple Channels

The USB protocol transfers messages grouped by channel. Messages received on channel 0 and channel 1 may be
returned by software out of order between the two channels (although inside each channel, all messages are in order).
The timestamp field of each message comes from the hardware and shows the exact time each message was received.
To compare ordering of messages on channel 0 vs channel 1, sort the received messages by the timestamp field first.

71

https://pyusb.github.io/pyusb/
https://zadig.akeo.ie/

python-can, Release 4.3.1

4.1.3 Backend Driver

The backend driver module canalystii <https://pypi.org/project/canalystii> must be installed to use this interface. This
open source driver is unofficial and based on reverse engineering. Earlier versions of python-can required a binary
library from the vendor for this functionality.

4.1.4 Bus

class can.interfaces.canalystii.CANalystIIBus(channel=(0, 1), device=0, bitrate=None, timing=None,
can_filters=None, rx_queue_size=None, **kwargs)

Parameters

• channel (int | Sequence[int] | str) – Optional channel number, list/tuple of multi-
ple channels, or comma separated string of channels. Default is to configure both channels.

• device (int) – Optional USB device number. Default is 0 (first device found).

• bitrate (int | None) – CAN bitrate in bits/second. Required unless the bit_timing argu-
ment is set.

• timing (BitTiming | BitTimingFd | None) – Optional BitTiming instance to use for
custom bit timing setting. If this argument is set then it overrides the bitrate argument. The
f_clock value of the timing instance must be set to 8_000_000 (8MHz) for standard CAN.
CAN FD and the BitTimingFd class are not supported.

• can_filters (Sequence[CanFilter | CanFilterExtended] | None) – Optional
filters for received CAN messages.

• rx_queue_size (int | None) – If set, software received message queue can only grow to
this many messages (for all channels) before older messages are dropped

• kwargs (Dict[str, Any])

4.2 CANtact CAN Interface

Interface for CANtact devices from Linklayer Labs

class can.interfaces.cantact.CantactBus(channel, bitrate=500000, poll_interval=0.01, monitor=False,
timing=None, **kwargs)

Bases: BusABC

CANtact interface

Parameters

• channel (int) – Channel number (zero indexed, labeled on multi-channel devices)

• bitrate (int) – Bitrate in bits/s

• monitor (bool) – If true, operate in listen-only monitoring mode

• timing (BitTiming | BitTimingFd | None) – Optional BitTiming instance to use for
custom bit timing setting. If this argument is set then it overrides the bitrate argument. The
f_clock value of the timing instance must be set to 24_000_000 (24MHz) for standard CAN.
CAN FD and the BitTimingFd class are not supported.

• poll_interval (float)

72 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

• kwargs (Any)

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout – If > 0, wait up to this many seconds for message to be ACK’ed or for transmit
queue to be ready depending on driver implementation. If timeout is exceeded, an exception
will be raised. Might not be supported by all interfaces. None blocks indefinitely.

Raises
CanOperationError – If an error occurred while sending

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

4.3 ETAS

This interface adds support for CAN interfaces by ETAS. The ETAS BOA (Basic Open API) is used.

4.3.1 Installation

Install the “ETAS ECU and Bus Interfaces – Distribution Package”.

Warning: Only Windows is supported by this interface.

The Linux kernel v5.13 (and greater) natively supports ETAS ES581.4, ES582.1 and ES584.1 USB modules. To
use these under Linux, please refer to the SocketCAN interface documentation.

4.3.2 Configuration

The simplest configuration file would be:

[default]
interface = etas
channel = ETAS://ETH/ES910:abcd/CAN:1

Channels are the URIs used by the underlying API.

To find available URIs, use detect_available_configs():

configs = can.interface.detect_available_configs(interfaces="etas")
for c in configs:

print(c)

4.3. ETAS 73

https://docs.python.org/3/library/typing.html#typing.Any
https://www.etas.com/
https://www.etas.com/de/downloadcenter/18102.php

python-can, Release 4.3.1

4.3.3 Bus

class can.interfaces.etas.EtasBus(channel, can_filters=None, receive_own_messages=False,
bitrate=1000000, fd=True, data_bitrate=2000000, **kwargs)

Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters as it handles generic tasks like applying
filters.

Parameters

• channel (str) – The can interface identifier. Expected type is backend dependent.

• can_filters (Sequence[CanFilter | CanFilterExtended] | None) – See
set_filters() for details.

• kwargs (dict) – Any backend dependent configurations are passed in this dictionary

• receive_own_messages (bool)

• bitrate (int)

• fd (bool)

• data_bitrate (int)

Raises

• ValueError – If parameters are out of range

• CanInterfaceNotImplementedError – If the driver cannot be accessed

• CanInitializationError – If the bus cannot be initialized

flush_tx_buffer()

Discard every message that may be queued in the output buffer(s).

Return type
None

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout (float | None) – If > 0, wait up to this many seconds for message to be ACK’ed
or for transmit queue to be ready depending on driver implementation. If timeout is ex-
ceeded, an exception will be raised. Might not be supported by all interfaces. None blocks
indefinitely.

Raises
CanOperationError – If an error occurred while sending

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

74 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

Return type
None

property state: BusState

Return the current state of the hardware

4.4 Geschwister Schneider and candleLight

Windows/Linux/Mac CAN driver based on usbfs or WinUSB WCID for Geschwister Schneider USB/CAN devices and
candleLight USB CAN interfaces.

Install: pip install "python-can[gs_usb]"

Usage: pass device index (starting from 0) if using automatic device detection:

import can

bus = can.Bus(interface="gs_usb", channel=dev.product, index=0, bitrate=250000)

Alternatively, pass bus and address to open a specific device. The parameters can be got by pyusb as shown below:

import usb
import can

dev = usb.core.find(idVendor=0x1D50, idProduct=0x606F)
bus = can.Bus(

interface="gs_usb",
channel=dev.product,
bus=dev.bus,
address=dev.address,
bitrate=250000

)

4.4.1 Supported devices

Geschwister Schneider USB/CAN devices and bytewerk.org candleLight USB CAN interfaces such as candleLight,
canable, cantact, etc.

4.4.2 Supported platform

Windows, Linux and Mac.

Note: The backend driver depends on pyusb so a pyusb backend driver library such as libusb must be installed.

On Windows a tool such as Zadig can be used to set the USB device driver to libusb-win32.

4.4. Geschwister Schneider and candleLight 75

https://pyusb.github.io/pyusb/
https://zadig.akeo.ie/

python-can, Release 4.3.1

4.4.3 Supplementary Info

The firmware implementation for Geschwister Schneider USB/CAN devices and candleLight USB CAN can be found
in candle-usb/candleLight_fw. The Linux kernel driver can be found in linux/drivers/net/can/usb/gs_usb.c.

The gs_usb interface in python-can relies on upstream gs_usb package, which can be found in https://pypi.org/
project/gs-usb/ or https://github.com/jxltom/gs_usb.

The gs_usb package uses pyusb as backend, which brings better cross-platform compatibility.

Note: The bitrate 10K, 20K, 50K, 83.333K, 100K, 125K, 250K, 500K, 800K and 1M are supported in this interface, as
implemented in the upstream gs_usb package’s set_bitrate method.

Warning: Message filtering is not supported in Geschwister Schneider USB/CAN devices and bytewerk.org
candleLight USB CAN interfaces.

4.4.4 Bus

class can.interfaces.gs_usb.GsUsbBus(channel, bitrate, index=None, bus=None, address=None,
can_filters=None, **kwargs)

Parameters

• channel – usb device name

• index – device number if using automatic scan, starting from 0. If specified, bus/address
shall not be provided.

• bus – number of the bus that the device is connected to

• address – address of the device on the bus it is connected to

• can_filters – not supported

• bitrate – CAN network bandwidth (bits/s)

send(msg, timeout=None)
Transmit a message to the CAN bus.

Parameters

• msg (Message) – A message object.

• timeout (float | None) – timeout is not supported. The function won’t return until
message is sent or exception is raised.

Raises
CanOperationError – if the message could not be sent

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

76 Chapter 4. Hardware Interfaces

https://github.com/candle-usb/candleLight_fw
https://github.com/torvalds/linux/blob/master/drivers/net/can/usb/gs_usb.c
https://pypi.org/project/gs-usb/
https://pypi.org/project/gs-usb/
https://github.com/jxltom/gs_usb
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

4.5 isCAN

Interface for isCAN from Thorsis Technologies GmbH, former ifak system GmbH.

4.5.1 Bus

class can.interfaces.iscan.IscanBus(channel, bitrate=500000, poll_interval=0.01, **kwargs)
isCAN interface

Parameters

• channel (str | int) – Device number

• bitrate (int) – Bitrate in bits/s

• poll_interval (float) – Poll interval in seconds when reading messages

exception can.interfaces.iscan.IscanError(function, error_code, arguments)

Parameters
error_code (int)

Return type
None

4.6 IXXAT Virtual Communication Interface

Interface to IXXAT Virtual Communication Interface V3 SDK. Works on Windows.

The Linux ECI SDK is currently unsupported, however on Linux some devices are supported with SocketCAN .

The send_periodic() method is supported natively through the on-board cyclic transmit list. Modifying cyclic
messages is not possible. You will need to stop it, and then start a new periodic message.

4.6.1 Configuration

The simplest configuration file would be:

[default]
interface = ixxat
channel = 0

Python-can will search for the first IXXAT device available and open the first channel. interface and channel
parameters are interpreted by frontend can.interfaces.interface module, while the following parameters are
optional and are interpreted by IXXAT implementation.

• receive_own_messages (default False) Enable self-reception of sent messages.

• unique_hardware_id (default first device) Unique hardware ID of the IXXAT device.

• extended (default True) Allow usage of extended IDs.

• fd (default False) Enable CAN-FD capabilities.

• rx_fifo_size (default 16 for CAN, 1024 for CAN-FD) Number of RX mailboxes.

• tx_fifo_size (default 16 for CAN, 128 for CAN-FD) Number of TX mailboxes.

4.5. isCAN 77

https://www.thorsis.com/en/industrial-automation/usb-interfaces/can/iscan-usb-interface/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
http://www.ixxat.com/

python-can, Release 4.3.1

• bitrate (default 500000) Channel bitrate.

• data_bitrate (defaults to 2Mbps) Channel data bitrate (only canfd, to use when message bitrate_switch is
used).

• sjw_abr (optional, only canfd) Bus timing value sample jump width (arbitration).

• tseg1_abr (optional, only canfd) Bus timing value tseg1 (arbitration).

• tseg2_abr (optional, only canfd) Bus timing value tseg2 (arbitration).

• sjw_dbr (optional, only used if baudrate switch enabled) Bus timing value sample jump width (data).

• tseg1_dbr (optional, only used if baudrate switch enabled) Bus timing value tseg1 (data).

• tseg2_dbr (optional, only used if baudrate switch enabled) Bus timing value tseg2 (data).

• ssp_dbr (optional, only used if baudrate switch enabled) Secondary sample point (data).

4.6.2 Filtering

The CAN filters act as an allow list in IXXAT implementation, that is if you supply a non-empty filter list you must
explicitly state EVERY frame you want to receive (including RTR field). The can_id/mask must be specified according
to IXXAT behaviour, that is bit 0 of can_id/mask parameters represents the RTR field in CAN frame. See IXXAT VCI
documentation, section “Message filters” for more info.

4.6.3 List available devices

In case you have connected multiple IXXAT devices, you have to select them by using their unique hardware id. The
function detect_available_configs() can be used to generate a list of BusABC constructors (including the channel
number and unique hardware ID number for the connected devices).

>>> import can
>>> configs = can.detect_available_configs("ixxat")
>>> for config in configs:
... print(config)
{'interface': 'ixxat', 'channel': 0, 'unique_hardware_id': 'HW441489'}
{'interface': 'ixxat', 'channel': 0, 'unique_hardware_id': 'HW107422'}
{'interface': 'ixxat', 'channel': 1, 'unique_hardware_id': 'HW107422'}

You may also get a list of all connected IXXAT devices using the function get_ixxat_hwids() as demonstrated
below:

>>> from can.interfaces.ixxat import get_ixxat_hwids
>>> for hwid in get_ixxat_hwids():
... print("Found IXXAT with hardware id '%s'." % hwid)
Found IXXAT with hardware id 'HW441489'.
Found IXXAT with hardware id 'HW107422'.

78 Chapter 4. Hardware Interfaces

python-can, Release 4.3.1

4.6.4 Bus

class can.interfaces.ixxat.IXXATBus(channel, can_filters=None, receive_own_messages=False,
unique_hardware_id=None, extended=True, fd=False,
rx_fifo_size=None, tx_fifo_size=None, bitrate=500000,
data_bitrate=2000000, sjw_abr=None, tseg1_abr=None,
tseg2_abr=None, sjw_dbr=None, tseg1_dbr=None, tseg2_dbr=None,
ssp_dbr=None, **kwargs)

The CAN Bus implemented for the IXXAT interface.

Based on the C implementation of IXXAT, two different dlls are provided by IXXAT, one to work with CAN,
the other with CAN-FD.

This class only delegates to related implementation (in calib_vcinpl or canlib_vcinpl2) class depending on fd
user option.

Parameters

• channel (int) – The Channel id to create this bus with.

• can_filters – See can.BusABC.set_filters().

• receive_own_messages (bool) – Enable self-reception of sent messages.

• unique_hardware_id (int | None) – UniqueHardwareId to connect (optional, will use
the first found if not supplied)

• extended (bool) – Default True, enables the capability to use extended IDs.

• fd (bool) – Default False, enables CAN-FD usage.

• rx_fifo_size (int | None) – Receive fifo size (default 1024 for fd, else 16)

• tx_fifo_size (int | None) – Transmit fifo size (default 128 for fd, else 16)

• bitrate (int) – Channel bitrate in bit/s

• data_bitrate (int) – Channel bitrate in bit/s (only in CAN-Fd if baudrate switch enabled).

• sjw_abr (int | None) – Bus timing value sample jump width (arbitration). Only takes
effect with fd enabled.

• tseg1_abr (int | None) – Bus timing value tseg1 (arbitration). Only takes effect with fd
enabled.

• tseg2_abr (int | None) – Bus timing value tseg2 (arbitration). Only takes effect with fd
enabled.

• sjw_dbr (int | None) – Bus timing value sample jump width (data). Only takes effect
with fd and baudrate switch enabled.

• tseg1_dbr (int | None) – Bus timing value tseg1 (data). Only takes effect with fd and
bitrate switch enabled.

• tseg2_dbr (int | None) – Bus timing value tseg2 (data). Only takes effect with fd and
bitrate switch enabled.

• ssp_dbr (int | None) – Secondary sample point (data). Only takes effect with fd and
bitrate switch enabled.

flush_tx_buffer()

Flushes the transmit buffer on the IXXAT

4.6. IXXAT Virtual Communication Interface 79

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout (float | None) – If > 0, wait up to this many seconds for message to be ACK’ed
or for transmit queue to be ready depending on driver implementation. If timeout is ex-
ceeded, an exception will be raised. Might not be supported by all interfaces. None blocks
indefinitely.

Raises
CanOperationError – If an error occurred while sending

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

Return type
None

property state: BusState

Return the current state of the hardware

Implementation based on vcinpl.dll

class can.interfaces.ixxat.canlib_vcinpl.IXXATBus(channel, can_filters=None,
receive_own_messages=False,
unique_hardware_id=None, extended=True,
rx_fifo_size=16, tx_fifo_size=16, bitrate=500000,
**kwargs)

The CAN Bus implemented for the IXXAT interface.

Warning: This interface does implement efficient filtering of messages, but the filters have to be set in
__init__ using the can_filters parameter. Using set_filters() does not work.

Parameters

• channel (int) – The Channel id to create this bus with.

• can_filters – See can.BusABC.set_filters().

• receive_own_messages (bool) – Enable self-reception of sent messages.

• unique_hardware_id (int | None) – unique_hardware_id to connect (optional, will use
the first found if not supplied)

• extended (bool) – Default True, enables the capability to use extended IDs.

• rx_fifo_size (int) – Receive fifo size (default 16)

• tx_fifo_size (int) – Transmit fifo size (default 16)

80 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• bitrate (int) – Channel bitrate in bit/s

flush_tx_buffer()

Flushes the transmit buffer on the IXXAT

send(msg, timeout=None)
Sends a message on the bus. The interface may buffer the message.

Parameters

• msg (Message) – The message to send.

• timeout (float | None) – Timeout after some time.

Raise
:class:CanTimeoutError :class:CanOperationError

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

property state: BusState

Return the current state of the hardware

class can.interfaces.ixxat.canlib_vcinpl.CyclicSendTask(scheduler, msgs, period, duration,
resolution)

A message in the cyclic transmit list.

Message send task with a defined duration and period.

Parameters

• messages – The messages to be sent periodically.

• period – The rate in seconds at which to send the messages.

• duration – Approximate duration in seconds to continue sending messages. If no duration
is provided, the task will continue indefinitely.

Raises
ValueError – If the given messages are invalid

pause()

Pause transmitting message (keep it in the list).

start()

Start transmitting message (add to list if needed).

stop()

Stop transmitting message (remove from list).

4.6. IXXAT Virtual Communication Interface 81

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

python-can, Release 4.3.1

Implementation based on vcinpl2.dll

class can.interfaces.ixxat.canlib_vcinpl2.IXXATBus(channel, can_filters=None,
receive_own_messages=False,
unique_hardware_id=None, extended=True,
rx_fifo_size=1024, tx_fifo_size=128,
bitrate=500000, data_bitrate=2000000,
sjw_abr=None, tseg1_abr=None,
tseg2_abr=None, sjw_dbr=None,
tseg1_dbr=None, tseg2_dbr=None,
ssp_dbr=None, **kwargs)

The CAN Bus implemented for the IXXAT interface.

Warning: This interface does implement efficient filtering of messages, but the filters have to be set in
__init__ using the can_filters parameter. Using set_filters() does not work.

Parameters

• channel (int) – The Channel id to create this bus with.

• can_filters – See can.BusABC.set_filters().

• receive_own_messages (int) – Enable self-reception of sent messages.

• unique_hardware_id (int | None) – unique_hardware_id to connect (optional, will use
the first found if not supplied)

• extended (bool) – Default True, enables the capability to use extended IDs.

• rx_fifo_size (int) – Receive fifo size (default 1024)

• tx_fifo_size (int) – Transmit fifo size (default 128)

• bitrate (int) – Channel bitrate in bit/s

• data_bitrate (int) – Channel bitrate in bit/s (only in CAN-Fd if baudrate switch enabled).

• sjw_abr (int | None) – Bus timing value sample jump width (arbitration).

• tseg1_abr (int | None) – Bus timing value tseg1 (arbitration)

• tseg2_abr (int | None) – Bus timing value tseg2 (arbitration)

• sjw_dbr (int | None) – Bus timing value sample jump width (data)

• tseg1_dbr (int | None) – Bus timing value tseg1 (data). Only takes effect with fd and
bitrate switch enabled.

• tseg2_dbr (int | None) – Bus timing value tseg2 (data). Only takes effect with fd and
bitrate switch enabled.

• ssp_dbr (int | None) – Secondary sample point (data). Only takes effect with fd and
bitrate switch enabled.

flush_tx_buffer()

Flushes the transmit buffer on the IXXAT

send(msg, timeout=None)
Sends a message on the bus. The interface may buffer the message.

Parameters

82 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• msg (Message) – The message to send.

• timeout (float | None) – Timeout after some time.

Raise
:class:CanTimeoutError :class:CanOperationError

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

class can.interfaces.ixxat.canlib_vcinpl2.CyclicSendTask(scheduler, msgs, period, duration,
resolution)

A message in the cyclic transmit list.

Message send task with a defined duration and period.

Parameters

• messages – The messages to be sent periodically.

• period – The rate in seconds at which to send the messages.

• duration – Approximate duration in seconds to continue sending messages. If no duration
is provided, the task will continue indefinitely.

Raises
ValueError – If the given messages are invalid

pause()

Pause transmitting message (keep it in the list).

start()

Start transmitting message (add to list if needed).

stop()

Stop transmitting message (remove from list).

4.6.5 Internals

The IXXAT BusABC object is a fairly straightforward interface to the IXXAT VCI library. It can open a specific device
ID or use the first one found.

The frame exchange does not involve threads in the background but is explicitly instantiated by the caller.

• recv() is a blocking call with optional timeout.

• send() is not blocking but may raise a VCIError if the TX FIFO is full

RX and TX FIFO sizes are configurable with rx_fifo_size and tx_fifo_size options, defaulting to 16 for both.

4.6. IXXAT Virtual Communication Interface 83

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

python-can, Release 4.3.1

4.7 Kvaser’s CANLIB

Kvaser’s CANLib SDK for Windows (also available on Linux).

4.7.1 Bus

class can.interfaces.kvaser.canlib.KvaserBus(channel, can_filters=None, timing=None, **kwargs)
The CAN Bus implemented for the Kvaser interface.

Parameters

• channel (int) – The Channel id to create this bus with.

• can_filters (list) – See can.BusABC.set_filters().

• timing (BitTiming | BitTimingFd | None)

Backend Configuration

Parameters

• timing (BitTiming | BitTimingFd | None) – An instance of BitTiming or
BitTimingFd to specify the bit timing parameters for the Kvaser interface. If provided,
it takes precedence over the all other timing-related parameters. Note that the f_clock prop-
erty of the timing instance must be 16_000_000 (16MHz) for standard CAN or 80_000_000
(80MHz) for CAN FD.

• bitrate (int) – Bitrate of channel in bit/s

• accept_virtual (bool) – If virtual channels should be accepted.

• tseg1 (int) – Time segment 1, that is, the number of quanta from (but not including) the
Sync Segment to the sampling point. If this parameter is not given, the Kvaser driver will
try to choose all bit timing parameters from a set of defaults.

• tseg2 (int) – Time segment 2, that is, the number of quanta from the sampling point to the
end of the bit.

• sjw (int) – The Synchronization Jump Width. Decides the maximum number of time quanta
that the controller can resynchronize every bit.

• no_samp (int) – Either 1 or 3. Some CAN controllers can also sample each bit three times.
In this case, the bit will be sampled three quanta in a row, with the last sample being taken
in the edge between TSEG1 and TSEG2. Three samples should only be used for relatively
slow baudrates.

• driver_mode (bool) – Silent or normal.

• single_handle (bool) – Use one Kvaser CANLIB bus handle for both reading and writing.
This can be set if reading and/or writing is done from one thread.

• receive_own_messages (bool) – If messages transmitted should also be received back.
Only works if single_handle is also False. If you want to receive messages from other appli-
cations on the same computer, set this to True or set single_handle to True.

• fd (bool) – If CAN-FD frames should be supported.

• exclusive (bool) – Don’t allow sharing of this CANlib channel.

• override_exclusive (bool) – Open the channel even if it is opened for exclusive access
already.

84 Chapter 4. Hardware Interfaces

http://www.kvaser.com
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

• data_bitrate (int) – Which bitrate to use for data phase in CAN FD. Defaults to arbitra-
tion bitrate.

• channel (int)

• can_filters (Sequence[CanFilter | CanFilterExtended] | None)

flash(flash=True)
Turn on or off flashing of the device’s LED for physical identification purposes.

flush_tx_buffer()

Wipeout the transmit buffer on the Kvaser.

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout – If > 0, wait up to this many seconds for message to be ACK’ed or for transmit
queue to be ready depending on driver implementation. If timeout is exceeded, an exception
will be raised. Might not be supported by all interfaces. None blocks indefinitely.

Raises
CanOperationError – If an error occurred while sending

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

4.7.2 Internals

The Kvaser Bus object with a physical CAN Bus can be operated in two modes; single_handlemode with one shared
bus handle used for both reading and writing to the CAN bus, or with two separate bus handles. Two separate handles
are needed if receiving and sending messages in different threads (see Kvaser documentation).

Warning: Any objects inheriting from Bus should not directly use the interface handle(/s).

Message filtering

The Kvaser driver and hardware only supports setting one filter per handle. If one filter is requested, this is will be
handled by the Kvaser driver. If more than one filter is needed, these will be handled in Python code in the recv
method. If a message does not match any of the filters, recv() will return None.

4.7. Kvaser’s CANLIB 85

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
http://www.kvaser.com/canlib-webhelp/page_user_guide_threads_applications.html

python-can, Release 4.3.1

Custom methods

This section contains Kvaser driver specific methods.

KvaserBus.get_stats()

Retrieves the bus statistics.

Use like so:

>>> stats = bus.get_stats()
>>> print(stats)
std_data: 0, std_remote: 0, ext_data: 0, ext_remote: 0, err_frame: 0, bus_load: 0.0
→˓%, overruns: 0

Returns
bus statistics.

Return type
BusStatistics

class can.interfaces.kvaser.structures.BusStatistics

This structure is used with the method get_stats().

property bus_load

The bus load, expressed as an integer in the interval 0 - 10000 representing 0.00% - 100.00% bus load.

property err_frame

Number of error frames.

property ext_data

Number of received extended (29-bit identifiers) data frames.

property ext_remote

Number of received extended (29-bit identifiers) remote frames.

property overruns

Number of overruns.

property std_data

Number of received standard (11-bit identifiers) data frames.

property std_remote

Number of received standard (11-bit identifiers) remote frames.

4.8 Neousys CAN Interface

This kind of interface can be found for example on Neousys POC-551VTC One needs to have correct drivers and DLL
(Share object for Linux) from Neousys.

Beware this is only tested on Linux kernel higher than v5.3. This should be drop in with Windows but you have to
replace with correct named DLL

class can.interfaces.neousys.NeousysBus(channel, device=0, bitrate=500000, **kwargs)
Bases: BusABC

Neousys CAN bus Class

86 Chapter 4. Hardware Interfaces

https://www.neousys-tech.com/en/support-service/resources/category/299-poc-551vtc-driver

python-can, Release 4.3.1

Parameters

• channel – channel number

• device – device number

• bitrate – bit rate.

send(msg, timeout=None)

Parameters

• msg – message to send

• timeout – timeout is not used here

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

4.9 Intrepid Control Systems neoVI

Note: This ICS neoVI documentation is a work in progress. Feedback and revisions are most welcome!

Interface to Intrepid Control Systems neoVI API range of devices via python-ics wrapper on Windows.

4.9.1 Installation

This neoVI interface requires the installation of the ICS neoVI DLL and python-ics package.

• Download and install the Intrepid Product Drivers
Intrepid Product Drivers

• Install python-can with the neovi extras:

pip install python-can[neovi]

4.9.2 Configuration

An example can.ini file for windows 7:

[default]
interface = neovi
channel = 1

4.9. Intrepid Control Systems neoVI 87

https://www.intrepidcs.com/
https://pypi.python.org/pypi/python-ics/
https://cdn.intrepidcs.net/updates/files/ICSDrivers.zip

python-can, Release 4.3.1

4.9.3 Bus

class can.interfaces.ics_neovi.NeoViBus(channel, can_filters=None, **kwargs)
The CAN Bus implemented for the python_ics interface https://github.com/intrepidcs/python_ics

Parameters

• channel (int or str or list(int) or list(str)) – The channel ids to create this
bus with. Can also be a single integer, netid name or a comma separated string.

• can_filters (list) – See can.BusABC.set_filters() for details.

• receive_own_messages (bool) – If transmitted messages should also be received by this
bus.

• use_system_timestamp (bool) – Use system timestamp for can messages instead of the
hardware time stamp

• serial (str) – Serial to connect (optional, will use the first found if not supplied)

• bitrate (int) – Channel bitrate in bit/s. (optional, will enable the auto bitrate feature if
not supplied)

• fd (bool) – If CAN-FD frames should be supported.

• data_bitrate (int) – Which bitrate to use for data phase in CAN FD. Defaults to arbitra-
tion bitrate.

• override_library_name – Absolute path or relative path to the library including filename.

Raises

• ImportError – If python-ics is not available

• CanInitializationError – If the bus could not be set up. May or may not be a
ICSInitializationError.

exception can.interfaces.ics_neovi.ICSApiError(error_code, description_short, description_long,
severity, restart_needed)

Indicates an error with the ICS API.

Parameters

• error_code (int)

• description_short (str)

• description_long (str)

• severity (int)

• restart_needed (int)

exception can.interfaces.ics_neovi.ICSInitializationError(error_code, description_short,
description_long, severity,
restart_needed)

Parameters

• error_code (int)

• description_short (str)

• description_long (str)

• severity (int)

88 Chapter 4. Hardware Interfaces

https://github.com/intrepidcs/python_ics
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• restart_needed (int)

exception can.interfaces.ics_neovi.ICSOperationError(error_code, description_short,
description_long, severity, restart_needed)

Parameters

• error_code (int)

• description_short (str)

• description_long (str)

• severity (int)

• restart_needed (int)

4.10 National Instruments NI-CAN

This interface adds support for NI-CAN controllers by National Instruments.

Warning: NI-CAN only seems to support 32-bit architectures so if the driver can’t be loaded on a 64-bit Python,
try using a 32-bit version instead.

Warning: CAN filtering has not been tested thoroughly and may not work as expected.

4.10.1 Bus

class can.interfaces.nican.NicanBus(channel, can_filters=None, bitrate=None, log_errors=True,
**kwargs)

The CAN Bus implemented for the NI-CAN interface.

Warning: This interface does implement efficient filtering of messages, but the filters have to be set in
__init__ using the can_filters parameter. Using set_filters() does not work.

Parameters

• channel (str) – Name of the object to open (e.g. “CAN0”)

• bitrate (int | None) – Bitrate in bit/s

• can_filters (Sequence[CanFilter | CanFilterExtended] | None) – See can.
BusABC.set_filters().

• log_errors (bool) – If True, communication errors will appear as CAN messages with
is_error_frame set to True and arbitration_id will identify the error (default True)

Raises

• CanInterfaceNotImplementedError – If the current operating system is not supported
or the driver could not be loaded.

• NicanInitializationError – If the bus could not be set up.

4.10. National Instruments NI-CAN 89

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://www.ni.com/can/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

exception can.interfaces.nican.NicanError(function, error_code, arguments)
Error from NI-CAN driver.

Parameters
error_code (int)

Return type
None

exception can.interfaces.nican.NicanInitializationError(function, error_code, arguments)

Parameters
error_code (int)

Return type
None

4.11 National Instruments NI-XNET

This interface adds support for NI-XNET CAN controllers by National Instruments.

Note: NI-XNET only supports windows platforms.

4.11.1 Bus

class can.interfaces.nixnet.NiXNETcanBus(channel='CAN1', bitrate=500000, timing=None,
can_filters=None, receive_own_messages=False,
can_termination=False, fd=False, fd_bitrate=None,
poll_interval=0.001, **kwargs)

Bases: BusABC

The CAN Bus implemented for the NI-XNET interface.

Parameters

• channel (str) – Name of the object to open (e.g. ‘CAN0’)

• bitrate (int) – Bitrate in bits/s

• timing (BitTiming | BitTimingFd | None) – Optional BitTiming or BitTimingFd
instance to use for custom bit timing setting. The f_clock value of the timing instance must
be set to 40_000_000 (40MHz). If this parameter is provided, it takes precedence over all
other timing-related parameters like bitrate, fd_bitrate and fd.

• can_filters (list) – See can.BusABC.set_filters().

• receive_own_messages (bool) – Enable self-reception of sent messages.

• poll_interval (float) – Poll interval in seconds.

• can_termination (bool)

• fd (bool)

• fd_bitrate (int | None)

• kwargs (Any)

90 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
http://www.ni.com/can/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any

python-can, Release 4.3.1

Raises
CanInitializationError – If starting communication fails

send(msg, timeout=None)
Send a message using NI-XNET.

Parameters

• msg (can.Message) – Message to send

• timeout (float) – Max time to wait for the device to be ready in seconds, None if time
is infinite

Raises
can.exceptions.CanOperationError – If writing to transmit buffer fails. It does not
wait for message to be ACKed currently.

Return type
None

reset()

Resets network interface. Stops network interface, then resets the CAN chip to clear the CAN error counters
(clear error passive state). Resetting includes clearing all entries from read and write queues.

Return type
None

shutdown()

Close object.

Return type
None

4.12 PCAN Basic API

Interface to Peak-System’s PCAN-Basic API.

4.12.1 Configuration

Here is an example configuration file for using PCAN-USB:

[default]
interface = pcan
channel = PCAN_USBBUS1
state = can.bus.BusState.PASSIVE
bitrate = 500000

channel (default "PCAN_USBBUS1")
CAN interface name. Valid channel values:

PCAN_ISABUSx
PCAN_DNGBUSx
PCAN_PCIBUSx
PCAN_USBBUSx
PCAN_PCCBUSx
PCAN_LANBUSx

4.12. PCAN Basic API 91

https://docs.python.org/3/library/functions.html#float
https://www.peak-system.com
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1

python-can, Release 4.3.1

Where x should be replaced with the desired channel number starting at 1.

state (default can.bus.BusState.ACTIVE)
BusState of the channel

bitrate (default 500000)
Channel bitrate

4.12.2 Linux installation

Beginning with version 3.4, Linux kernels support the PCAN adapters natively via SocketCAN , refer to: PCAN .

4.12.3 Bus

class can.interfaces.pcan.PcanBus(channel='PCAN_USBBUS1', device_id=None, state=BusState.ACTIVE,
timing=None, bitrate=500000, receive_own_messages=False,
**kwargs)

A PCAN USB interface to CAN.

On top of the usual Bus methods provided, the PCAN interface includes the flash() and status() methods.

Parameters

• channel (str) – The can interface name. An example would be ‘PCAN_USBBUS1’. Al-
ternatively the value can be an int with the numerical value. Default is ‘PCAN_USBBUS1’

• device_id (int) – Select the PCAN interface based on its ID. The device ID is a 8/32bit
value that can be configured for each PCAN device. If you set the device_id parameter, it
takes precedence over the channel parameter. The constructor searches all connected inter-
faces and initializes the first one that matches the parameter value. If no device is found, an
exception is raised.

• state (can.bus.BusState) – BusState of the channel. Default is ACTIVE

• timing (BitTiming | BitTimingFd | None) – An instance of BitTiming or
BitTimingFd to specify the bit timing parameters for the PCAN interface. If this pa-
rameter is provided, it takes precedence over all other timing-related parameters. If this
parameter is not provided, the bit timing parameters can be specified using the bitrate pa-
rameter for standard CAN or the fd, f_clock, f_clock_mhz, nom_brp, nom_tseg1, nom_tseg2,
nom_sjw, data_brp, data_tseg1, data_tseg2, and data_sjw parameters for CAN FD. Note
that the f_clock value of the timing instance must be 8_000_000 for standard CAN or any
of the following values for CAN FD: 20_000_000, 24_000_000, 30_000_000, 40_000_000,
60_000_000, 80_000_000.

• bitrate (int) – Bitrate of channel in bit/s. Default is 500 kbit/s. Ignored if using CanFD.

• receive_own_messages (bool) – Enable self-reception of sent messages.

• fd (bool) – Should the Bus be initialized in CAN-FD mode.

• f_clock (int) – Clock rate in Hz. Any of the following: 20000000, 24000000, 30000000,
40000000, 60000000, 80000000. Ignored if not using CAN-FD. Pass either f_clock or
f_clock_mhz.

• f_clock_mhz (int) – Clock rate in MHz. Any of the following: 20, 24, 30, 40, 60, 80.
Ignored if not using CAN-FD. Pass either f_clock or f_clock_mhz.

• nom_brp (int) – Clock prescaler for nominal time quantum. In the range (1..1024) Ignored
if not using CAN-FD.

92 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• nom_tseg1 (int) – Time segment 1 for nominal bit rate, that is, the number of quanta from
(but not including) the Sync Segment to the sampling point. In the range (1..256). Ignored
if not using CAN-FD.

• nom_tseg2 (int) – Time segment 2 for nominal bit rate, that is, the number of quanta from
the sampling point to the end of the bit. In the range (1..128). Ignored if not using CAN-FD.

• nom_sjw (int) – Synchronization Jump Width for nominal bit rate. Decides the maximum
number of time quanta that the controller can resynchronize every bit. In the range (1..128).
Ignored if not using CAN-FD.

• data_brp (int) – Clock prescaler for fast data time quantum. In the range (1..1024) Ignored
if not using CAN-FD.

• data_tseg1 (int) – Time segment 1 for fast data bit rate, that is, the number of quanta from
(but not including) the Sync Segment to the sampling point. In the range (1..32). Ignored if
not using CAN-FD.

• data_tseg2 (int) – Time segment 2 for fast data bit rate, that is, the number of quanta from
the sampling point to the end of the bit. In the range (1..16). Ignored if not using CAN-FD.

• data_sjw (int) – Synchronization Jump Width for fast data bit rate. Decides the maximum
number of time quanta that the controller can resynchronize every bit. In the range (1..16).
Ignored if not using CAN-FD.

• auto_reset (bool) – Enable automatic recovery in bus off scenario. Resetting the driver
takes ~500ms during which it will not be responsive.

• kwargs (Any)

flash(flash)
Turn on or off flashing of the device’s LED for physical identification purposes.

get_device_number()

Return the PCAN device number.

Return type
int

Returns
PCAN device number

reset()

Command the PCAN driver to reset the bus after an error.

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout – If > 0, wait up to this many seconds for message to be ACK’ed or for transmit
queue to be ready depending on driver implementation. If timeout is exceeded, an exception
will be raised. Might not be supported by all interfaces. None blocks indefinitely.

Raises
CanOperationError – If an error occurred while sending

4.12. PCAN Basic API 93

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

set_device_number(device_number)
Set the PCAN device number.

Parameters
device_number – new PCAN device number

Return type
bool

Returns
True if device number set successfully

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

property state

Return the current state of the hardware

status()

Query the PCAN bus status.

Return type
int

Returns
The status code. See values in basic.PCAN_ERROR_

status_is_ok()

Convenience method to check that the bus status is OK

status_string()

Query the PCAN bus status.

Returns
The status description, if any was found.

Return type
str | None

4.13 Robotell CAN-USB interface

An USB to CAN adapter sold on Aliexpress, etc. with the manufacturer name Robotell printed on the case. There is
also a USB stick version with a clear case. If the description or screenshots refer to EmbededDebug or EmbededConfig
the device should be compatible with this driver. These USB devices are based on a STM32 controller with a CH340
serial interface and use a binary protocol - NOT compatible with SLCAN

See https://www.amobbs.com/thread-4651667-1-1.html for some background on these devices.

This driver directly uses either the local or remote (not tested) serial port. Remote serial ports will be specified via
special URL. Both raw TCP sockets as also RFC2217 ports are supported.

Usage: use port or URL[@baurate] to open the device. For example use /dev/ttyUSB0@115200 or COM4@9600
for local serial ports and socket://192.168.254.254:5000 or rfc2217://192.168.254.254:5000 for remote
ports.

94 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://www.amobbs.com/thread-4651667-1-1.html

python-can, Release 4.3.1

4.13.1 Bus

class can.interfaces.robotell.robotellBus(channel, ttyBaudrate=115200, bitrate=None, rtscts=False,
**kwargs)

robotell interface

Parameters

• channel (str) – port of underlying serial or usb device (e.g. /dev/ttyUSB0, COM8, . . .)
Must not be empty. Can also end with @115200 (or similarly) to specify the baudrate.

• ttyBaudrate (int) – baudrate of underlying serial or usb device (Ignored if set via the
channel parameter)

• bitrate (int) – CAN Bitrate in bit/s. Value is stored in the adapter and will be used as
default if no bitrate is specified

• rtscts (bool) – turn hardware handshake (RTS/CTS) on and off

get_serial_number(timeout)
Get serial number of the slcan interface.

Parameters
timeout (int | None) – seconds to wait for serial number or None to wait indefinitely

Returns
None on timeout or a str object.

Return type
str | None

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout – If > 0, wait up to this many seconds for message to be ACK’ed or for transmit
queue to be ready depending on driver implementation. If timeout is exceeded, an exception
will be raised. Might not be supported by all interfaces. None blocks indefinitely.

Raises
CanOperationError – If an error occurred while sending

set_auto_bus_management(auto_man)

Parameters
auto_man (bool) – Enable/disable automatic bus management

set_auto_retransmit(retrans_flag)

Parameters
retrans_flag (bool) – Enable/disable automatic retransmission of unacknowledged CAN
frames

set_bitrate(bitrate)

Raises
ValueError – if bitrate is greater than 1000000

4.13. Robotell CAN-USB interface 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError

python-can, Release 4.3.1

Parameters
bitrate (int) – Bitrate in bit/s

set_hw_filter(filterid, enabled, msgid_value, msgid_mask, extended_msg)

Raises
ValueError – if filterid is not between 1 and 14

Parameters

• filterid (int) – ID of filter (1-14)

• enabled (bool) – This filter is enabled

• msgid_value (int) – CAN message ID to filter on. The test unit does not accept an
extented message ID unless bit 31 of the ID was set.

• msgid_mask (int) – Mask to apply to CAN messagge ID

• extended_msg (bool) – Filter operates on extended format messages

set_serial_rate(serial_bps)

Parameters
serial_bps (int) – Set the baud rate of the serial port (not CAN) interface

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

4.14 Seeed Studio USB-CAN Analyzer

SKU: 114991193

Links:

• https://www.seeedstudio.com/USB-CAN-Analyzer-p-2888.html

• https://github.com/SeeedDocument/USB-CAN_Analyzer

• https://copperhilltech.com/blog/usbcan-analyzer-usb-to-can-bus-serial-protocol-definition/

4.14.1 Installation

This interface has additional dependencies which can be installed using pip and the optional extra seeedstudio. That
will include the dependency pyserial:

pip install python-can[seeedstudio]

96 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://www.seeedstudio.com/USB-CAN-Analyzer-p-2888.html
https://github.com/SeeedDocument/USB-CAN_Analyzer
https://copperhilltech.com/blog/usbcan-analyzer-usb-to-can-bus-serial-protocol-definition/

python-can, Release 4.3.1

4.14.2 Interface

can.interfaces.seeedstudio.SeeedBus

A bus example:

bus = can.interface.Bus(interface='seeedstudio', channel='/dev/ttyUSB0', bitrate=500000)

4.14.3 Configuration

SeeedBus(channel,
baudrate=2000000,
timeout=0.1,
frame_type='STD',
operation_mode='normal',
bitrate=500000)

CHANNEL
The serial port created by the USB device when connected.

TIMEOUT
Only used by the underling serial port, it probably should not be changed. The serial port baudrate=2000000 and
rtscts=false are also matched to the device so are not added here.

FRAMETYPE

• “STD”

• “EXT”

OPERATIONMODE

• “normal”

• “loopback”

• “silent”

• “loopback_and_silent”

BITRATE

• 1000000

• 800000

• 500000

• 400000

• 250000

• 200000

• 125000

• 100000

• 50000

• 20000

• 10000

4.14. Seeed Studio USB-CAN Analyzer 97

python-can, Release 4.3.1

• 5000

4.15 CAN over Serial

A text based interface. For example use over serial ports like /dev/ttyS1 or /dev/ttyUSB0 on Linux machines or
COM1 on Windows. Remote ports can be also used via a special URL. Both raw TCP sockets as also RFC2217 ports
are supported: socket://192.168.254.254:5000 or rfc2217://192.168.254.254:5000. In addition a virtual
loopback can be used via loop:// URL. The interface is a simple implementation that has been used for recording
CAN traces.

Note: The properties extended_id, is_remote_frame and is_error_frame from the class:~can.Message are not in
use. This interface will not send or receive flags for this properties.

4.15.1 Bus

class can.interfaces.serial.serial_can.SerialBus(channel, baudrate=115200, timeout=0.1,
rtscts=False, *args, **kwargs)

Enable basic can communication over a serial device.

Note: See _recv_internal() for some special semantics.

Parameters

• channel (str) – The serial device to open. For example “/dev/ttyS1” or “/dev/ttyUSB0” on
Linux or “COM1” on Windows systems.

• baudrate (int) – Baud rate of the serial device in bit/s (default 115200).

Warning: Some serial port implementations don’t care about the baudrate.

• timeout (float) – Timeout for the serial device in seconds (default 0.1).

• rtscts (bool) – turn hardware handshake (RTS/CTS) on and off

Raises

• CanInitializationError – If the given parameters are invalid.

• CanInterfaceNotImplementedError – If the serial module is not installed.

_recv_internal(timeout)
Read a message from the serial device.

Parameters
timeout (float | None) –

Warning: This parameter will be ignored. The timeout value of the channel is used.

98 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

Returns

Received message and False (because no filtering as taken place).

Warning: Flags like is_extended_id, is_remote_frame and is_error_framewill
not be set over this function, the flags in the return message are the default values.

Return type
Tuple[Message | None, bool]

4.15.2 Internals

The frames that will be sent and received over the serial interface consist of six parts. The start and the stop byte for
the frame, the timestamp, DLC, arbitration ID and the payload. The payload has a variable length of between 0 and
8 bytes, the other parts are fixed. Both, the timestamp and the arbitration ID will be interpreted as 4 byte unsigned
integers. The DLC is also an unsigned integer with a length of 1 byte.

Serial frame format

Start of
frame

Timestamp DLC Arbitration ID Pay-
load

End of
frame

Length
(Byte)

1 4 1 4 0 - 8 1

Data
type

Byte Unsigned 4 byte integer Unsigned 1 byte
integer

Unsigned 4
byte integer

Byte Byte

Byte or-
der

- Little-Endian Little-Endian Little-Endian - -

Descrip-
tion

Must be
0xAA

Usually s, ms or µs since start
of the device

Length in byte of
the payload

- - Must be
0xBB

Examples of serial frames

CAN message with 8 byte payload

CAN message
Arbitration ID Payload
1 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88

Serial frame
Start of
frame

Timestamp DLC Arbitration ID Payload End of
frame

0xAA 0x66 0x73 0x00
0x00

0x08 0x01 0x00 0x00
0x00

0x11 0x22 0x33 0x44 0x55 0x66
0x77 0x88

0xBB

4.15. CAN over Serial 99

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

CAN message with 1 byte payload

CAN message
Arbitration ID Payload
1 0x11

Serial frame
Start of frame Timestamp DLC Arbitration ID Payload End of frame
0xAA 0x66 0x73 0x00 0x00 0x01 0x01 0x00 0x00 0x00 0x11 0xBB

CAN message with 0 byte payload

CAN message
Arbitration ID Payload
1 None

Serial frame
Start of frame Timestamp DLC Arbitration ID End of frame
0xAA 0x66 0x73 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0xBB

4.16 CAN over Serial / SLCAN

A text based interface: compatible to slcan-interfaces (slcan ASCII protocol) should also support LAWICEL direct.
These interfaces can also be used with socketcan and slcand with Linux. This driver directly uses either the local or
remote serial port, it makes slcan-compatible interfaces usable with Windows also. Remote serial ports will be specified
via special URL. Both raw TCP sockets as also RFC2217 ports are supported.

Usage: use port or URL[@baurate] to open the device. For example use /dev/ttyUSB0@115200 or COM4@9600
for local serial ports and socket://192.168.254.254:5000 or rfc2217://192.168.254.254:5000 for remote
ports.

4.16.1 Supported devices

Todo: Document this.

100 Chapter 4. Hardware Interfaces

python-can, Release 4.3.1

4.16.2 Bus

class can.interfaces.slcan.slcanBus(channel, ttyBaudrate=115200, bitrate=None, btr=None,
sleep_after_open=2, rtscts=False, timeout=0.001, **kwargs)

slcan interface

Parameters

• channel (str) – port of underlying serial or usb device (e.g. /dev/ttyUSB0, COM8, . . .)
Must not be empty. Can also end with @115200 (or similarly) to specify the baudrate.

• ttyBaudrate (int) – baudrate of underlying serial or usb device (Ignored if set via the
channel parameter)

• bitrate (int | None) – Bitrate in bit/s

• btr (str | None) – BTR register value to set custom can speed

• poll_interval – Poll interval in seconds when reading messages

• sleep_after_open (float) – Time to wait in seconds after opening serial connection

• rtscts (bool) – turn hardware handshake (RTS/CTS) on and off

• timeout (float) – Timeout for the serial or usb device in seconds (default 0.001)

• kwargs (Any)

Raises

• ValueError – if both bitrate and btr are set or the channel is invalid

• CanInterfaceNotImplementedError – if the serial module is missing

• CanInitializationError – if the underlying serial connection could not be established

get_serial_number(timeout)
Get serial number of the slcan interface.

Parameters
timeout (float | None) – seconds to wait for serial number or None to wait indefinitely

Returns
None on timeout or a str object.

Return type
str | None

get_version(timeout)
Get HW and SW version of the slcan interface.

Parameters
timeout (float | None) – seconds to wait for version or None to wait indefinitely

Returns
tuple (hw_version, sw_version) WHERE int hw_version is the hardware version or None on
timeout int sw_version is the software version or None on timeout

Return type
Tuple[int | None, int | None]

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

4.16. CAN over Serial / SLCAN 101

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

Parameters

• msg (Message) – A message object.

• timeout (float | None) – If > 0, wait up to this many seconds for message to be ACK’ed
or for transmit queue to be ready depending on driver implementation. If timeout is ex-
ceeded, an exception will be raised. Might not be supported by all interfaces. None blocks
indefinitely.

Raises
CanOperationError – If an error occurred while sending

Return type
None

set_bitrate(bitrate)

Parameters
bitrate (int) – Bitrate in bit/s

Raises
ValueError – if bitrate is not among the possible values

Return type
None

set_bitrate_reg(btr)

Parameters
btr (str) – BTR register value to set custom can speed

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

Return type
None

4.16.3 Internals

Todo: Document the internals of slcan interface.

4.17 SocketCAN

The SocketCAN documentation can be found in the Linux kernel docs in the networking directory. Quoting from the
SocketCAN Linux documentation:

The socketcan package is an implementation of CAN protocols (Controller Area Network) for Linux. CAN
is a networking technology which has widespread use in automation, embedded devices, and automotive
fields. While there have been other CAN implementations for Linux based on character devices, Socket-
CAN uses the Berkeley socket API, the Linux network stack and implements the CAN device drivers as

102 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://www.kernel.org/doc/Documentation/networking/can.txt

python-can, Release 4.3.1

network interfaces. The CAN socket API has been designed as similar as possible to the TCP/IP protocols
to allow programmers, familiar with network programming, to easily learn how to use CAN sockets.

Important: python-can versions before 2.2 had two different implementations named socketcan_ctypes and
socketcan_native. These were removed in version 4.0.0 after a deprecation period.

4.17.1 Socketcan Quickstart

The CAN network driver provides a generic interface to setup, configure and monitor CAN devices. To configure
bit-timing parameters use the program ip.

The virtual CAN driver (vcan)

The virtual CAN interfaces allow the transmission and reception of CAN frames without real CAN controller hardware.
Virtual CAN network devices are usually named ‘vcanX’, like vcan0 vcan1 vcan2.

To create a virtual can interface using socketcan run the following:

sudo modprobe vcan
Create a vcan network interface with a specific name
sudo ip link add dev vcan0 type vcan
sudo ip link set vcan0 up

Real Device

vcan should be substituted for can and vcan0 should be substituted for can0 if you are using real hardware. Setting
the bitrate can also be done at the same time, for example to enable an existing can0 interface with a bitrate of 1MB:

sudo ip link set can0 up type can bitrate 1000000

CAN over Serial / SLCAN

SLCAN adapters can be used directly via CAN over Serial / SLCAN , or via SocketCAN with some help from the slcand
utility which can be found in the can-utils package.

To create a socketcan interface for an SLCAN adapter run the following:

slcand -f -o -c -s5 /dev/ttyAMA0
ip link set up slcan0

Names of the interfaces created by slcand match the slcan\d+ regex. If a custom name is required, it can be specified
as the last argument. E.g.:

slcand -f -o -c -s5 /dev/ttyAMA0 can0
ip link set up can0

4.17. SocketCAN 103

https://github.com/linux-can/can-utils

python-can, Release 4.3.1

PCAN

Kernels >= 3.4 supports the PCAN adapters natively via SocketCAN , so there is no need to install any drivers. The
CAN interface can be brought like so:

sudo modprobe peak_usb
sudo modprobe peak_pci
sudo ip link set can0 up type can bitrate 500000

Intrepid

The Intrepid Control Systems, Inc provides several devices (e.g. ValueCAN) as well as Linux module and user-space
daemon to make it possible to use them via SocketCAN.

Refer to below repositories for installation instructions:

• Intrepid kernel module

• Intrepid user-space daemon

Send Test Message

The can-utils library for Linux includes a cansend tool which is useful to send known payloads. For example to send
a message on vcan0:

cansend vcan0 123#DEADBEEF

CAN Errors

A device may enter the “bus-off” state if too many errors occurred on the CAN bus. Then no more messages are
received or sent. An automatic bus-off recovery can be enabled by setting the “restart-ms” to a non-zero value, e.g.:

sudo ip link set canX type can restart-ms 100

Alternatively, the application may realize the “bus-off” condition by monitoring CAN error frames and do a restart
when appropriate with the command:

ip link set canX type can restart

Note that a restart will also create a CAN error frame.

List network interfaces

To reveal the newly created can0 or a vcan0 interface:

ifconfig

104 Chapter 4. Hardware Interfaces

https://github.com/intrepidcs/intrepid-socketcan-kernel-module
https://github.com/intrepidcs/icsscand
https://github.com/linux-can/can-utils

python-can, Release 4.3.1

Display CAN statistics

ip -details -statistics link show vcan0

Network Interface Removal

To remove the network interface:

sudo ip link del vcan0

4.17.2 Wireshark

Wireshark supports socketcan and can be used to debug python-can messages. Fire it up and watch your new interface.

To spam a bus:

import time
import can

interface = 'socketcan'
channel = 'vcan0'

def producer(id):
""":param id: Spam the bus with messages including the data id."""
bus = can.Bus(channel=channel, interface=interface)
for i in range(10):

msg = can.Message(arbitration_id=0xc0ffee, data=[id, i, 0, 1, 3, 1, 4, 1], is_
→˓extended_id=False)

bus.send(msg)

time.sleep(1)

producer(10)

With debugging turned right up this looks something like this:

4.17. SocketCAN 105

python-can, Release 4.3.1

The process to follow bus traffic is even easier:

for message in Bus(can_interface):
print(message)

4.17.3 Reading and Timeouts

Reading a single CAN message off of the bus is simple with the bus.recv() function:

import can

bus = can.Bus(channel='vcan0', interface='socketcan')
message = bus.recv()

By default, this performs a blocking read, which means bus.recv() won’t return until a CAN message shows up on
the socket. You can optionally perform a blocking read with a timeout like this:

message = bus.recv(1.0) # Timeout in seconds.

if message is None:
print('Timeout occurred, no message.')

If you set the timeout to 0.0, the read will be executed as non-blocking, which means bus.recv(0.0) will return
immediately, either with a Message object or None, depending on whether data was available on the socket.

106 Chapter 4. Hardware Interfaces

python-can, Release 4.3.1

4.17.4 Filtering

The implementation features efficient filtering of can_id’s. That filtering occurs in the kernel and is much much more
efficient than filtering messages in Python.

4.17.5 Broadcast Manager

The socketcan interface implements thin wrappers to the linux broadcast manager socket api. This allows the cyclic
transmission of CAN messages at given intervals. The overhead for periodic message sending is extremely low as all
the heavy lifting occurs within the linux kernel.

The BusABC initialized for socketcan interface transparently handles scheduling of CAN messages to Linux BCM via
send_periodic():

with can.interface.Bus(interface="socketcan", channel="can0") as bus:
task = bus.send_periodic(...)

More examples that uses send_periodic() are included in python-can/examples/cyclic.py.

The task object returned by send_periodic() can be used to halt, alter or cancel the periodic message task:

class can.interfaces.socketcan.CyclicSendTask(bcm_socket, task_id, messages, period, duration=None)
A SocketCAN cyclic send task supports:

• setting of a task duration

• modifying the data

• stopping then subsequent restarting of the task

Construct and start() a task.

Parameters

• bcm_socket (socket) – An open BCM socket on the desired CAN channel.

• task_id (int) – The identifier used to uniquely reference particular cyclic send task within
Linux BCM.

• messages (Sequence[Message] | Message) – The messages to be sent periodically.

• period (float) – The rate in seconds at which to send the messages.

• duration (float | None) – Approximate duration in seconds to send the messages for.

modify_data(messages)
Update the contents of the periodically sent CAN messages by sending TX_SETUP message to Linux
kernel.

The number of new cyclic messages to be sent must be equal to the original number of messages originally
specified for this task.

Note: The messages must all have the same arbitration_id like the first message.

Parameters
messages (Sequence[Message] | Message) – The messages with the new can.
Message.data.

4.17. SocketCAN 107

https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence

python-can, Release 4.3.1

Return type
None

start()

Restart a periodic task by sending TX_SETUP message to Linux kernel.

It verifies presence of the particular BCM task through sending TX_READ message to Linux kernel prior
to scheduling.

Raises
ValueError – If the task referenced by task_id is already running.

Return type
None

stop()

Stop a task by sending TX_DELETE message to Linux kernel.

This will delete the entry for the transmission of the CAN-message with the specified task_id identifier.
The message length for the command TX_DELETE is {[bcm_msg_head]} (only the header).

Return type
None

4.17.6 Buffer Sizes

Currently, the sending buffer size cannot be adjusted by this library. However, this issue describes how to change it via
the command line/shell.

4.17.7 Bus

The SocketcanBus specializes BusABC to ensure usage of SocketCAN Linux API. The most important differences
are:

• usage of SocketCAN BCM for periodic messages scheduling;

• filtering of CAN messages on Linux kernel level;

• usage of nanosecond timings from the kernel.

class can.interfaces.socketcan.SocketcanBus(channel='', receive_own_messages=False,
local_loopback=True, fd=False, can_filters=None,
ignore_rx_error_frames=False, **kwargs)

A SocketCAN interface to CAN.

It implements can.BusABC._detect_available_configs() to search for available interfaces.

Creates a new socketcan bus.

If setting some socket options fails, an error will be printed but no exception will be thrown. This includes
enabling:

• that own messages should be received,

• CAN-FD frames and

• error frames.

Parameters

108 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/hardbyte/python-can/issues/657#issuecomment-516504797

python-can, Release 4.3.1

• channel (str) – The can interface name with which to create this bus. An example channel
would be ‘vcan0’ or ‘can0’. An empty string ‘’ will receive messages from all channels. In
that case any sent messages must be explicitly addressed to a channel using can.Message.
channel.

• receive_own_messages (bool) – If transmitted messages should also be received by this
bus.

• local_loopback (bool) – If local loopback should be enabled on this bus. Please note that
local loopback does not mean that messages sent on a socket will be readable on the same
socket, they will only be readable on other open sockets on the same machine. More info
can be read on the socketcan documentation: See https://www.kernel.org/doc/html/latest/
networking/can.html#socketcan-local-loopback1

• fd (bool) – If CAN-FD frames should be supported.

• can_filters (Sequence[CanFilter | CanFilterExtended] | None) – See can.
BusABC.set_filters().

• ignore_rx_error_frames – If incoming error frames should be discarded.

RECV_LOGGING_LEVEL = 9

Log level for received messages

channel_info = 'unknown'

a string describing the underlying bus and/or channel

property filters: Sequence[CanFilter | CanFilterExtended] | None

Modify the filters of this bus. See set_filters() for details.

flush_tx_buffer()

Discard every message that may be queued in the output buffer(s).

Return type
None

property protocol: CanProtocol

Return the CAN protocol used by this bus instance.

This value is set at initialization time and does not change during the lifetime of a bus instance.

recv(timeout=None)
Block waiting for a message from the Bus.

Parameters
timeout (float | None) – seconds to wait for a message or None to wait indefinitely

Returns
None on timeout or a Message object.

Raises
CanOperationError – If an error occurred while reading

Return type
Message | None

send(msg, timeout=None)
Transmit a message to the CAN bus.

Parameters

• msg (Message) – A message object.

4.17. SocketCAN 109

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://www.kernel.org/doc/html/latest/networking/can.html#socketcan-local-loopback1
https://www.kernel.org/doc/html/latest/networking/can.html#socketcan-local-loopback1
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

python-can, Release 4.3.1

• timeout (float | None) – Wait up to this many seconds for the transmit queue to be
ready. If not given, the call may fail immediately.

Raises
CanError – if the message could not be written.

Return type
None

send_periodic(msgs, period, duration=None, store_task=True, modifier_callback=None)
Start sending messages at a given period on this bus.

The task will be active until one of the following conditions are met:

• the (optional) duration expires

• the Bus instance goes out of scope

• the Bus instance is shutdown

• stop_all_periodic_tasks() is called

• the task’s stop() method is called.

Parameters

• msgs (Message | Sequence[Message]) – Message(s) to transmit

• period (float) – Period in seconds between each message

• duration (float | None) – Approximate duration in seconds to continue sending mes-
sages. If no duration is provided, the task will continue indefinitely.

• store_task (bool) – If True (the default) the task will be attached to this Bus instance.
Disable to instead manage tasks manually.

• modifier_callback (Callable[[Message], None] | None) – Function which
should be used to modify each message’s data before sending. The callback modifies the
data of the message and returns None.

Returns
A started task instance. Note the task can be stopped (and depending on the backend modified)
by calling the task’s stop() method.

Return type
CyclicSendTaskABC

Note: Note the duration before the messages stop being sent may not be exactly the same as the duration
specified by the user. In general the message will be sent at the given rate until at least duration seconds.

Note: For extremely long-running Bus instances with many short-lived tasks the default api with
store_task==True may not be appropriate as the stopped tasks are still taking up memory as they are
associated with the Bus instance.

set_filters(filters=None)
Apply filtering to all messages received by this Bus.

All messages that match at least one filter are returned. If filters is None or a zero length sequence, all
messages are matched.

110 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable

python-can, Release 4.3.1

Calling without passing any filters will reset the applied filters to None.

Parameters
filters (Sequence[CanFilter | CanFilterExtended] | None) – A iterable of dic-
tionaries each containing a “can_id”, a “can_mask”, and an optional “extended” key:

[{"can_id": 0x11, "can_mask": 0x21, "extended": False}]

A filter matches, when <received_can_id> & can_mask == can_id & can_mask. If
extended is set as well, it only matches messages where <received_is_extended> ==
extended. Else it matches every messages based only on the arbitration ID and mask.

Return type
None

shutdown()

Stops all active periodic tasks and closes the socket.

Return type
None

property state: BusState

Return the current state of the hardware

stop_all_periodic_tasks(remove_tasks=True)
Stop sending any messages that were started using send_periodic().

Note: The result is undefined if a single task throws an exception while being stopped.

Parameters
remove_tasks (bool) – Stop tracking the stopped tasks.

Return type
None

4.18 socketcand Interface

Socketcand is part of the Linux-CAN project, providing a Network-to-CAN bridge as a Linux damon. It implements a
specific TCP/IP based communication protocol to transfer CAN frames and control commands.

The main advantage compared to UDP-based protocols (e.g. virtual interface) is, that TCP guarantees delivery and
that the message order is kept.

Here is a small example dumping all can messages received by a socketcand daemon running on a remote Raspberry
Pi:

import can

bus = can.interface.Bus(interface='socketcand', host="10.0.16.15", port=29536, channel=
→˓"can0")

loop until Ctrl-C
try:
while True:

(continues on next page)

4.18. socketcand Interface 111

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool
https://github.com/linux-can/socketcand
https://github.com/linux-can
https://github.com/linux-can/socketcand/blob/master/doc/protocol.md

python-can, Release 4.3.1

(continued from previous page)

msg = bus.recv()
print(msg)

except KeyboardInterrupt:
pass

The output may look like this:

Timestamp: 1637791111.209224 ID: 000006fd X Rx DLC: 8 c4 10 e3␣
→˓2d 96 ff 25 6b
Timestamp: 1637791111.233951 ID: 000001ad X Rx DLC: 4 4d 47 c7␣
→˓64
Timestamp: 1637791111.409415 ID: 000005f7 X Rx DLC: 8 86 de e6␣
→˓0f 42 55 5d 39
Timestamp: 1637791111.434377 ID: 00000665 X Rx DLC: 8 97 96 51␣
→˓0f 23 25 fc 28
Timestamp: 1637791111.609763 ID: 0000031d X Rx DLC: 8 16 27 d8␣
→˓3d fe d8 31 24
Timestamp: 1637791111.634630 ID: 00000587 X Rx DLC: 8 4e 06 85␣
→˓23 6f 81 2b 65

This interface also supports detect_available_configs().

import can
import can.interfaces.socketcand

cfg = can.interfaces.socketcand._detect_available_configs()
if cfg:

bus = can.Bus(**cfg[0])

The socketcand daemon broadcasts UDP beacons every 3 seconds. The default detection method waits for slightly
more than 3 seconds to receive the beacon packet. If you want to increase the timeout, you can use can.interfaces.
socketcand.detect_beacon() directly. Below is an example which detects the beacon and uses the configuration
to create a socketcand bus.

import can
import can.interfaces.socketcand

cfg = can.interfaces.socketcand.detect_beacon(6000)
if cfg:

bus = can.Bus(**cfg[0])

4.18.1 Bus

class can.interfaces.socketcand.SocketCanDaemonBus(channel, host, port, tcp_tune=False,
can_filters=None, **kwargs)

Bases: BusABC

Connects to a CAN bus served by socketcand.

It implements can.BusABC._detect_available_configs() to search for available interfaces.

It will attempt to connect to the server for up to 10s, after which a TimeoutError exception will be thrown.

If the handshake with the socketcand server fails, a CanError exception is thrown.

112 Chapter 4. Hardware Interfaces

python-can, Release 4.3.1

Parameters

• channel – The can interface name served by socketcand. An example channel would be
‘vcan0’ or ‘can0’.

• host – The host address of the socketcand server.

• port – The port of the socketcand server.

• tcp_tune – This tunes the TCP socket for low latency (TCP_NODELAY, and
TCP_QUICKACK). This option is not available under windows.

• can_filters – See can.BusABC.set_filters().

send(msg, timeout=None)
Transmit a message to the CAN bus.

Parameters

• msg – A message object.

• timeout – Ignored

shutdown()

Stops all active periodic tasks and closes the socket.

can.interfaces.socketcand.detect_beacon(timeout_ms=3100)
Detects socketcand servers

This is what can.detect_available_configs() ends up calling to search for available socketcand servers
with a default timeout of 3100ms (socketcand sends a beacon packet every 3000ms).

Using this method directly allows for adjusting the timeout. Extending the timeout beyond the default time period
could be useful if UDP packet loss is a concern.

Parameters
timeout_ms (int) – Timeout in milliseconds to wait for socketcand beacon packets

Returns
See detect_available_configs()

Return type
List[AutoDetectedConfig]

4.18.2 Socketcand Quickstart

The following section will show how to get the stuff installed on a Raspberry Pi with a MCP2515-based CAN interface,
e.g. available from Waveshare. However, it will also work with any other socketcan device.

Install CAN Interface for a MCP2515 based interface on a Raspberry Pi

Add the following lines to /boot/config.txt. Please take care on the frequency of the crystal on your MCP2515
board:

dtparam=spi=on
dtoverlay=mcp2515-can0,oscillator=12000000,interrupt=25,spimaxfrequency=1000000

Reboot after /boot/config.txt has been modified.

4.18. socketcand Interface 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://www.waveshare.com/rs485-can-hat.htm

python-can, Release 4.3.1

Enable socketcan for can0

Create config file for systemd-networkd to start the socketcan interface automatically:

cat >/etc/systemd/network/80-can.network <<'EOT'
[Match]
Name=can0
[CAN]
BitRate=250K
RestartSec=100ms
EOT

Enable systemd-networkd on reboot and start it immediately (if it was not already startet):

sudo systemctl enable systemd-networkd
sudo systemctl start systemd-networkd

Build socketcand from source

autoconf is needed to build socketcand
sudo apt-get install -y autoconf
clone & build sources
git clone https://github.com/linux-can/socketcand.git
cd socketcand
./autogen.sh
./configure
make

Install socketcand

make install

Run socketcand

./socketcand -v -i can0

During start, socketcand will prompt its IP address and port it listens to:

Verbose output activated

Using network interface 'eth0'
Listen adress is 10.0.16.15
Broadcast adress is 10.0.255.255
creating broadcast thread...
binding socket to 10.0.16.15:29536

114 Chapter 4. Hardware Interfaces

python-can, Release 4.3.1

4.19 SYSTEC interface

Windows interface for the USBCAN devices supporting up to 2 channels based on the particular product. There is
support for the devices also on Linux through the SocketCAN interface and for Windows using this systec interface.

4.19.1 Installation

The interface requires installation of the USBCAN32.dll library. Download and install the driver for specific SYSTEC
device.

4.19.2 Supported devices

The interface supports following devices:

• GW-001 (obsolete),

• GW-002 (obsolete),

• Multiport CAN-to-USB G3,

• USB-CANmodul1 G3,

• USB-CANmodul2 G3,

• USB-CANmodul8 G3,

• USB-CANmodul16 G3,

• USB-CANmodul1 G4,

• USB-CANmodul2 G4.

4.19.3 Configuration

The simplest configuration would be:

interface = systec
channel = 0

Python-can will search for the first device found if not specified explicitly by the device_number parameter. The
interface and channel are the only mandatory parameters. The interface supports two channels 0 and 1. The
maximum number of entries in the receive and transmit buffer can be set by the parameters rx_buffer_entries and
tx_buffer_entries, with default value 4096 set for both.

Optional parameters:

• bitrate (default 500000) Channel bitrate in bit/s

• device_number (default first device) The device number of the USB-CAN

• rx_buffer_entries (default 4096) The maximum number of entries in the receive buffer

• tx_buffer_entries (default 4096) The maximum number of entries in the transmit buffer

• state (default BusState.ACTIVE) BusState of the channel

• receive_own_messages (default False) If messages transmitted should also be received back

4.19. SYSTEC interface 115

https://www.systec-electronic.com/en/products/

python-can, Release 4.3.1

4.19.4 Bus

class can.interfaces.systec.ucanbus.UcanBus(channel, can_filters=None, **kwargs)
The CAN Bus implemented for the SYSTEC interface.

Parameters

• channel (int) – The Channel id to create this bus with.

• can_filters (list) – See can.BusABC.set_filters().

Backend Configuration

Parameters

• bitrate (int) – Channel bitrate in bit/s. Default is 500000.

• device_number (int) – The device number of the USB-CAN. Valid values: 0 through 254.
Special value 255 is reserved to detect the first connected device (should only be used, in case
only one module is connected to the computer). Default is 255.

• state (can.bus.BusState) – BusState of the channel. Default is ACTIVE.

• receive_own_messages (bool) – If messages transmitted should also be received back.
Default is False.

• rx_buffer_entries (int) – The maximum number of entries in the receive buffer. Default
is 4096.

• tx_buffer_entries (int) – The maximum number of entries in the transmit buffer. De-
fault is 4096.

Raises

• ValueError – If invalid input parameter were passed.

• CanInterfaceNotImplementedError – If the platform is not supported.

• CanInitializationError – If hardware or CAN interface initialization failed.

static create_filter(extended, from_id, to_id, rtr_only, rtr_too)
Calculates AMR and ACR using CAN-ID as parameter.

Parameters

• extended (bool) – if True parameters from_id and to_id contains 29-bit CAN-ID

• from_id (int) – first CAN-ID which should be received

• to_id (int) – last CAN-ID which should be received

• rtr_only (bool) – if True only RTR-Messages should be received, and rtr_too will be
ignored

• rtr_too (bool) – if True CAN data frames and RTR-Messages should be received

Returns
Returns list with one filter containing a “can_id”, a “can_mask” and “extended” key.

flush_tx_buffer()

Flushes the transmit buffer.

Raises
CanError – If flushing of the transmit buffer failed.

116 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

send(msg, timeout=None)
Sends one CAN message.

When a transmission timeout is set the firmware tries to send a message within this timeout. If it could
not be sent the firmware sets the “auto delete” state. Within this state all transmit CAN messages for this
channel will be deleted automatically for not blocking the other channel.

Parameters

• msg (can.Message) – The CAN message.

• timeout (float) – Transmit timeout in seconds (value 0 switches off the “auto delete”)

Raises
CanOperationError – If the message could not be sent.

shutdown()

Shuts down all CAN interfaces and hardware interface.

property state

Return the current state of the hardware

4.19.5 Internals

Message filtering

The interface and driver supports only setting of one filter per channel. If one filter is requested, this is will be handled
by the driver itself. If more than one filter is needed, these will be handled in Python code in the recv method. If a
message does not match any of the filters, recv() will return None.

Periodic tasks

The driver supports periodic message sending but without the possibility to set the interval between messages. There-
fore the handling of the periodic messages is done by the interface using the ThreadBasedCyclicSendTask .

4.20 USB2CAN Interface

The USB2CAN is a cheap CAN interface based on an ARM7 chip (STR750FV2). There is support for this device on
Linux through the SocketCAN interface and for Windows using this usb2can interface.

Support though windows is achieved through a DLL very similar to the way the PCAN functions. The API is called
CANAL (CAN Abstraction Layer) which is a separate project designed to be used with VSCP which is a socket like
messaging system that is not only cross platform but also supports other types of devices.

4.20. USB2CAN Interface 117

https://docs.python.org/3/library/functions.html#float
http://www.8devices.com/products/usb2can

python-can, Release 4.3.1

4.20.1 Installation

1. To install on Windows download the USB2CAN Windows driver. It is compatible with XP, Vista, Win7,
Win8/8.1. (Written against driver version v1.0.2.1)

2. Install the appropriate version of pywin32 (win32com)

3. Download the USB2CAN CANAL DLL from the USB2CAN website. Place this in either the same directory
you are running usb2can.py from or your DLL folder in your python install. Note that only a 32-bit version is
currently available, so this only works in a 32-bit Python environment.

4.20.2 Internals

This interface originally written against CANAL DLL version v1.0.6.

Interface Layout

• usb2canabstractionlayer.py
This file is only a wrapper for the CANAL API that the interface expects. There are also a couple of
constants here to try and make dealing with the bitwise operations for flag setting a little easier. Other than
that this is only the CANAL API. If a programmer wanted to work with the API directly this is the file that
allows you to do this. The CANAL project does not provide this wrapper and normally must be accessed
with C.

• usb2canInterface.py
This file provides the translation to and from the python-can library to the CANAL API. This is where all
the logic is and setup code is. Most issues if they are found will be either found here or within the DLL that
is provided

• serial_selector.py
See the section below for the reason for adding this as it is a little odd. What program does is if a serial
number is not provided to the usb2canInterface file this program does WMI (Windows Management In-
strumentation) calls to try and figure out what device to connect to. It then returns the serial number of the
device. Currently it is not really smart enough to figure out what to do if there are multiple devices. This
needs to be changed if people are using more than one interface.

4.20.3 Interface Specific Items

There are a few things that are kinda strange about this device and are not overly obvious about the code or things that
are not done being implemented in the DLL.

1. You need the Serial Number to connect to the device under Windows. This is part of the “setup string” that
configures the device. There are a few options for how to get this.

1. Use usb2canWin.py to find the serial number.

2. Look on the device and enter it either through a prompt/barcode scanner/hardcode it. (Not recommended)

3. Reprogram the device serial number to something and do that for all the devices you own. (Really Not
Recommended, can no longer use multiple devices on one computer)

2. In usb2canabstractionlayer.py there is a structure called CanalMsg which has a unsigned byte array of
size 8. In the usb2canInterface file it passes in an unsigned byte array of size 8 also which if you pass less
than 8 bytes in it stuffs it with extra zeros. So if the data "01020304" is sent the message would look like
"0102030400000000".

118 Chapter 4. Hardware Interfaces

https://sourceforge.net/projects/pywin32/

python-can, Release 4.3.1

There is also a part of this structure called sizeData which is the actual length of the data that was sent not
the stuffed message (in this case would be 4). What then happens is although a message of size 8 is sent to the
device only the first 4 bytes of information would be sent. This is done because the DLL expects a length of 8
and nothing else. So to make it compatible that has to be sent through the wrapper. If usb2canInterface sent
an array of length 4 with sizeData of 4 as well the array would throw an incompatible data type error.

3. The masking features have not been implemented currently in the CANAL interface in the version currently on
the USB2CAN website.

Warning: Currently message filtering is not implemented. Contributions are most welcome!

4.20.4 Bus

class can.interfaces.usb2can.Usb2canBus(channel=None, dll='usb2can.dll', flags=8, *_, bitrate=500000,
serial=None, **kwargs)

Interface to a USB2CAN Bus.

This interface only works on Windows. Please use socketcan on Linux.

Parameters

• channel (str | None) – The device’s serial number. If not provided, Windows Manage-
ment Instrumentation will be used to identify the first such device.

• bitrate (int) – Bitrate of channel in bit/s. Values will be limited to a maximum of 1000
Kb/s. Default is 500 Kbs

• flags (int) – Flags to directly pass to open function of the usb2can abstraction layer.

• dll (str) – Path to the DLL with the CANAL API to load Defaults to ‘usb2can.dll’

• serial (str | None) – Alias for channel that is provided for legacy reasons. If both serial
and channel are set, serial will be used and channel will be ignored.

Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters as it handles generic tasks like applying
filters.

Parameters

• channel (str | None) – The can interface identifier. Expected type is backend dependent.

• can_filters – See set_filters() for details.

• kwargs (dict) – Any backend dependent configurations are passed in this dictionary

• dll (str)

• flags (int)

• bitrate (int)

• serial (str | None)

Raises

• ValueError – If parameters are out of range

• CanInterfaceNotImplementedError – If the driver cannot be accessed

• CanInitializationError – If the bus cannot be initialized

4.20. USB2CAN Interface 119

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

python-can, Release 4.3.1

4.20.5 Exceptions

exception can.interfaces.usb2can.usb2canabstractionlayer.CanalError(value)
An enumeration.

4.20.6 Miscellaneous

class can.interfaces.usb2can.Usb2CanAbstractionLayer(dll='usb2can.dll')
A low level wrapper around the usb2can library.

Documentation: http://www.8devices.com/media/products/usb2can/downloads/CANAL_API.pdf

Parameters
dll (str | os.PathLike[str]) – the path to the usb2can DLL to load

Raises
CanInterfaceNotImplementedError – if the DLL could not be loaded

blocking_receive(handle, msg, timeout)

Return type
CanalError

blocking_send(handle, msg, timeout)

Return type
CanalError

close(handle)

Return type
CanalError

get_library_version()

get_statistics(handle, statistics)

Return type
CanalError

get_status(handle, status)

Return type
CanalError

get_vendor_string()

get_version()

open(configuration, flags)
Opens a CAN connection using CanalOpen().

Parameters

• configuration (str) – the configuration: “device_id; baudrate”

• flags (int) – the flags to be set

Returns
Valid handle for CANAL API functions on success

120 Chapter 4. Hardware Interfaces

http://www.8devices.com/media/products/usb2can/downloads/CANAL_API.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

Raises
CanInterfaceNotImplementedError – if any error occurred

receive(handle, msg)

Return type
CanalError

send(handle, msg)

Return type
CanalError

4.21 Vector

This interface adds support for CAN controllers by Vector. Only Windows is supported.

4.21.1 Configuration

By default this library uses the channel configuration for CANalyzer. To use a different application, open Vector
Hardware Configuration program and create a new application and assign the channels you may want to use. Specify
the application name as app_name='Your app name' when constructing the bus or in a config file.

Channel should be given as a list of channels starting at 0.

Here is an example configuration file connecting to CAN 1 and CAN 2 for an application named “python-can”:

[default]
interface = vector
channel = 0, 1
app_name = python-can

4.21.2 VectorBus

class can.interfaces.vector.VectorBus(channel, can_filters=None, poll_interval=0.01,
receive_own_messages=False, timing=None, bitrate=None,
rx_queue_size=16384, app_name='CANalyzer', serial=None,
fd=False, data_bitrate=None, sjw_abr=2, tseg1_abr=6,
tseg2_abr=3, sjw_dbr=2, tseg1_dbr=6, tseg2_dbr=3, **kwargs)

Bases: BusABC

The CAN Bus implemented for the Vector interface.

Parameters

• channel (int | Sequence[int] | str) – The channel indexes to create this bus with.
Can also be a single integer or a comma separated string.

• can_filters (Sequence[CanFilter | CanFilterExtended] | None) – See can.
BusABC.

• receive_own_messages (bool) – See can.BusABC.

4.21. Vector 121

https://vector.com/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

• timing (BitTiming | BitTimingFd | None) – An instance of BitTiming or
BitTimingFd to specify the bit timing parameters for the VectorBus interface. The f_clock
value of the timing instance must be set to 8_000_000 (8MHz) or 16_000_000 (16MHz)
for CAN 2.0 or 80_000_000 (80MHz) for CAN FD. If this parameter is provided, it takes
precedence over all other timing-related parameters. Otherwise, the bit timing can be spec-
ified using the following parameters: bitrate for standard CAN or fd, data_bitrate, sjw_abr,
tseg1_abr, tseg2_abr, sjw_dbr, tseg1_dbr, and tseg2_dbr for CAN FD.

• poll_interval (float) – Poll interval in seconds.

• bitrate (int | None) – Bitrate in bits/s.

• rx_queue_size (int) – Number of messages in receive queue (power of 2). CAN: range
16. . . 32768 CAN-FD: range 8192. . . 524288

• app_name (str | None) – Name of application in Vector Hardware Config. If set to None,
the channel should be a global channel index.

• serial (int | None) – Serial number of the hardware to be used. If set, the channel
parameter refers to the channels ONLY on the specified hardware. If set, the app_name does
not have to be previously defined in Vector Hardware Config.

• fd (bool) – If CAN-FD frames should be supported.

• data_bitrate (int | None) – Which bitrate to use for data phase in CAN FD. Defaults
to arbitration bitrate.

• sjw_abr (int) – Bus timing value sample jump width (arbitration).

• tseg1_abr (int) – Bus timing value tseg1 (arbitration)

• tseg2_abr (int) – Bus timing value tseg2 (arbitration)

• sjw_dbr (int) – Bus timing value sample jump width (data)

• tseg1_dbr (int) – Bus timing value tseg1 (data)

• tseg2_dbr (int) – Bus timing value tseg2 (data)

• kwargs (Any)

Raises

• CanInterfaceNotImplementedError – If the current operating system is not supported
or the driver could not be loaded.

• CanInitializationError – If the bus could not be set up. This may or may not be a
VectorInitializationError.

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout (float | None) – If > 0, wait up to this many seconds for message to be ACK’ed
or for transmit queue to be ready depending on driver implementation. If timeout is ex-
ceeded, an exception will be raised. Might not be supported by all interfaces. None blocks
indefinitely.

Raises
CanOperationError – If an error occurred while sending

122 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

Return type
None

flush_tx_buffer()

Flush the TX buffer of the bus.

Implementation does not use function xlCanFlushTransmitQueue of the XL driver, as it works only for
XL family devices.

Warning: Using this function will flush the queue and send a high voltage message (ID = 0, DLC =
0, no data).

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

Return type
None

static popup_vector_hw_configuration(wait_for_finish=0)
Open vector hardware configuration window.

Parameters
wait_for_finish (int) – Time to wait for user input in milliseconds.

Return type
None

static get_application_config(app_name, app_channel)
Retrieve information for an application in Vector Hardware Configuration.

Parameters

• app_name (str) – The name of the application.

• app_channel (int) – The channel of the application.

Returns
Returns a tuple of the hardware type, the hardware index and the hardware channel.

Raises
can.interfaces.vector.VectorInitializationError – If the application name does
not exist in the Vector hardware configuration.

Return type
Tuple[int | XL_HardwareType, int, int]

static set_application_config(app_name, app_channel, hw_type, hw_index, hw_channel, **kwargs)
Modify the application settings in Vector Hardware Configuration.

This method can also be used with a channel config dictionary:

import can
from can.interfaces.vector import VectorBus

(continues on next page)

4.21. Vector 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

(continued from previous page)

configs = can.detect_available_configs(interfaces=['vector'])
cfg = configs[0]
VectorBus.set_application_config(app_name="MyApplication", app_channel=0, **cfg)

Parameters

• app_name (str) – The name of the application. Creates a new application if it does not
exist yet.

• app_channel (int) – The channel of the application.

• hw_type (int | XL_HardwareType) – The hardware type of the interface. E.g
XL_HardwareType.XL_HWTYPE_VIRTUAL

• hw_index (int) – The index of the interface if multiple interface with the same hardware
type are present.

• hw_channel (int) – The channel index of the interface.

• kwargs (Any)

Raises
can.interfaces.vector.VectorInitializationError – If the application name does
not exist in the Vector hardware configuration.

Return type
None

set_filters(filters=None)
Apply filtering to all messages received by this Bus.

All messages that match at least one filter are returned. If filters is None or a zero length sequence, all
messages are matched.

Calling without passing any filters will reset the applied filters to None.

Parameters
filters (Sequence[CanFilter | CanFilterExtended] | None) – A iterable of dic-
tionaries each containing a “can_id”, a “can_mask”, and an optional “extended” key:

[{"can_id": 0x11, "can_mask": 0x21, "extended": False}]

A filter matches, when <received_can_id> & can_mask == can_id & can_mask. If
extended is set as well, it only matches messages where <received_is_extended> ==
extended. Else it matches every messages based only on the arbitration ID and mask.

Return type
None

recv(timeout=None)
Block waiting for a message from the Bus.

Parameters
timeout (float | None) – seconds to wait for a message or None to wait indefinitely

Returns
None on timeout or a Message object.

Raises
CanOperationError – If an error occurred while reading

124 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

python-can, Release 4.3.1

Return type
Message | None

send_periodic(msgs, period, duration=None, store_task=True, modifier_callback=None)
Start sending messages at a given period on this bus.

The task will be active until one of the following conditions are met:

• the (optional) duration expires

• the Bus instance goes out of scope

• the Bus instance is shutdown

• stop_all_periodic_tasks() is called

• the task’s stop() method is called.

Parameters

• msgs (Message | Sequence[Message]) – Message(s) to transmit

• period (float) – Period in seconds between each message

• duration (float | None) – Approximate duration in seconds to continue sending mes-
sages. If no duration is provided, the task will continue indefinitely.

• store_task (bool) – If True (the default) the task will be attached to this Bus instance.
Disable to instead manage tasks manually.

• modifier_callback (Callable[[Message], None] | None) – Function which
should be used to modify each message’s data before sending. The callback modifies the
data of the message and returns None.

Returns
A started task instance. Note the task can be stopped (and depending on the backend modified)
by calling the task’s stop() method.

Return type
CyclicSendTaskABC

Note: Note the duration before the messages stop being sent may not be exactly the same as the duration
specified by the user. In general the message will be sent at the given rate until at least duration seconds.

Note: For extremely long-running Bus instances with many short-lived tasks the default api with
store_task==True may not be appropriate as the stopped tasks are still taking up memory as they are
associated with the Bus instance.

stop_all_periodic_tasks(remove_tasks=True)
Stop sending any messages that were started using send_periodic().

Note: The result is undefined if a single task throws an exception while being stopped.

Parameters
remove_tasks (bool) – Stop tracking the stopped tasks.

4.21. Vector 125

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

Return type
None

4.21.3 Exceptions

exception can.interfaces.vector.VectorError(error_code, error_string, function)
Bases: CanError

exception can.interfaces.vector.VectorInitializationError(error_code, error_string, function)
Bases: VectorError, CanInitializationError

exception can.interfaces.vector.VectorOperationError(error_code, error_string, function)
Bases: VectorError, CanOperationError

4.21.4 Miscellaneous

can.interfaces.vector.get_channel_configs()

Read channel properties from Vector XL API.

Return type
List[VectorChannelConfig]

class can.interfaces.vector.VectorChannelConfig(name, hw_type, hw_index, hw_channel,
channel_index, channel_mask, channel_capabilities,
channel_bus_capabilities, is_on_bus,
connected_bus_type, bus_params, serial_number,
article_number, transceiver_name)

Bases: NamedTuple

NamedTuple which contains the channel properties from Vector XL API.

Parameters

• name (str)

• hw_type (int | XL_HardwareType)

• hw_index (int)

• hw_channel (int)

• channel_index (int)

• channel_mask (int)

• channel_capabilities (XL_ChannelCapabilities)

• channel_bus_capabilities (XL_BusCapabilities)

• is_on_bus (bool)

• connected_bus_type (XL_BusTypes)

• bus_params (VectorBusParams | None)

• serial_number (int)

• article_number (int)

• transceiver_name (str)

126 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

python-can, Release 4.3.1

class can.interfaces.vector.canlib.VectorBusParams(bus_type, can, canfd)
Bases: NamedTuple

Parameters

• bus_type (XL_BusTypes)

• can (VectorCanParams)

• canfd (VectorCanFdParams)

class can.interfaces.vector.canlib.VectorCanParams(bitrate, sjw, tseg1, tseg2, sam, output_mode,
can_op_mode)

Bases: NamedTuple

Parameters

• bitrate (int)

• sjw (int)

• tseg1 (int)

• tseg2 (int)

• sam (int)

• output_mode (XL_OutputMode)

• can_op_mode (XL_CANFD_BusParams_CanOpMode)

class can.interfaces.vector.canlib.VectorCanFdParams(bitrate, data_bitrate, sjw_abr, tseg1_abr,
tseg2_abr, sam_abr, sjw_dbr, tseg1_dbr,
tseg2_dbr, output_mode, can_op_mode)

Bases: NamedTuple

Parameters

• bitrate (int)

• data_bitrate (int)

• sjw_abr (int)

• tseg1_abr (int)

• tseg2_abr (int)

• sam_abr (int)

• sjw_dbr (int)

• tseg1_dbr (int)

• tseg2_dbr (int)

• output_mode (XL_OutputMode)

• can_op_mode (XL_CANFD_BusParams_CanOpMode)

class can.interfaces.vector.xldefine.XL_HardwareType(value)
Bases: IntEnum

An enumeration.

XL_HWTYPE_NONE = 0

4.21. Vector 127

https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.NamedTuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.IntEnum

python-can, Release 4.3.1

XL_HWTYPE_VIRTUAL = 1

XL_HWTYPE_CANCARDX = 2

XL_HWTYPE_CANAC2PCI = 6

XL_HWTYPE_CANCARDY = 12

XL_HWTYPE_CANCARDXL = 15

XL_HWTYPE_CANCASEXL = 21

XL_HWTYPE_CANCASEXL_LOG_OBSOLETE = 23

XL_HWTYPE_CANBOARDXL = 25

XL_HWTYPE_CANBOARDXL_PXI = 27

XL_HWTYPE_VN2600 = 29

XL_HWTYPE_VN2610 = 29

XL_HWTYPE_VN3300 = 37

XL_HWTYPE_VN3600 = 39

XL_HWTYPE_VN7600 = 41

XL_HWTYPE_CANCARDXLE = 43

XL_HWTYPE_VN8900 = 45

XL_HWTYPE_VN8950 = 47

XL_HWTYPE_VN2640 = 53

XL_HWTYPE_VN1610 = 55

XL_HWTYPE_VN1630 = 57

XL_HWTYPE_VN1640 = 59

XL_HWTYPE_VN8970 = 61

XL_HWTYPE_VN1611 = 63

XL_HWTYPE_VN5240 = 64

XL_HWTYPE_VN5610 = 65

XL_HWTYPE_VN5620 = 66

XL_HWTYPE_VN7570 = 67

XL_HWTYPE_VN5650 = 68

XL_HWTYPE_IPCLIENT = 69

XL_HWTYPE_VN5611 = 70

XL_HWTYPE_IPSERVER = 71

128 Chapter 4. Hardware Interfaces

python-can, Release 4.3.1

XL_HWTYPE_VN5612 = 72

XL_HWTYPE_VX1121 = 73

XL_HWTYPE_VN5601 = 74

XL_HWTYPE_VX1131 = 75

XL_HWTYPE_VT6204 = 77

XL_HWTYPE_VN1630_LOG = 79

XL_HWTYPE_VN7610 = 81

XL_HWTYPE_VN7572 = 83

XL_HWTYPE_VN8972 = 85

XL_HWTYPE_VN0601 = 87

XL_HWTYPE_VN5640 = 89

XL_HWTYPE_VX0312 = 91

XL_HWTYPE_VH6501 = 94

XL_HWTYPE_VN8800 = 95

XL_HWTYPE_IPCL8800 = 96

XL_HWTYPE_IPSRV8800 = 97

XL_HWTYPE_CSMCAN = 98

XL_HWTYPE_VN5610A = 101

XL_HWTYPE_VN7640 = 102

XL_HWTYPE_VX1135 = 104

XL_HWTYPE_VN4610 = 105

XL_HWTYPE_VT6306 = 107

XL_HWTYPE_VT6104A = 108

XL_HWTYPE_VN5430 = 109

XL_HWTYPE_VTSSERVICE = 110

XL_HWTYPE_VN1530 = 112

XL_HWTYPE_VN1531 = 113

XL_HWTYPE_VX1161A = 114

XL_HWTYPE_VX1161B = 115

XL_HWTYPE_VGNSS = 116

XL_HWTYPE_VXLAPINIC = 118

4.21. Vector 129

python-can, Release 4.3.1

XL_MAX_HWTYPE = 120

class can.interfaces.vector.xldefine.XL_ChannelCapabilities(value)
Bases: IntFlag

An enumeration.

XL_CHANNEL_FLAG_TIME_SYNC_RUNNING = 1

XL_CHANNEL_FLAG_NO_HWSYNC_SUPPORT = 1024

XL_CHANNEL_FLAG_SPDIF_CAPABLE = 16384

XL_CHANNEL_FLAG_CANFD_BOSCH_SUPPORT = 536870912

XL_CHANNEL_FLAG_CMACTLICENSE_SUPPORT = 1073741824

XL_CHANNEL_FLAG_CANFD_ISO_SUPPORT = 2147483648

class can.interfaces.vector.xldefine.XL_BusCapabilities(value)
Bases: IntFlag

An enumeration.

XL_BUS_COMPATIBLE_CAN = 1

XL_BUS_ACTIVE_CAP_CAN = 65536

XL_BUS_COMPATIBLE_LIN = 2

XL_BUS_ACTIVE_CAP_LIN = 131072

XL_BUS_COMPATIBLE_FLEXRAY = 4

XL_BUS_ACTIVE_CAP_FLEXRAY = 262144

XL_BUS_COMPATIBLE_MOST = 16

XL_BUS_ACTIVE_CAP_MOST = 1048576

XL_BUS_COMPATIBLE_DAIO = 64

XL_BUS_ACTIVE_CAP_DAIO = 4194304

XL_BUS_COMPATIBLE_J1708 = 256

XL_BUS_ACTIVE_CAP_J1708 = 16777216

XL_BUS_COMPATIBLE_KLINE = 2048

XL_BUS_ACTIVE_CAP_KLINE = 134217728

XL_BUS_COMPATIBLE_ETHERNET = 4096

XL_BUS_ACTIVE_CAP_ETHERNET = 268435456

XL_BUS_COMPATIBLE_A429 = 8192

XL_BUS_ACTIVE_CAP_A429 = 536870912

130 Chapter 4. Hardware Interfaces

https://docs.python.org/3/library/enum.html#enum.IntFlag
https://docs.python.org/3/library/enum.html#enum.IntFlag

python-can, Release 4.3.1

class can.interfaces.vector.xldefine.XL_BusTypes(value)
Bases: IntFlag

An enumeration.

XL_BUS_TYPE_NONE = 0

XL_BUS_TYPE_CAN = 1

XL_BUS_TYPE_LIN = 2

XL_BUS_TYPE_FLEXRAY = 4

XL_BUS_TYPE_AFDX = 8

XL_BUS_TYPE_MOST = 16

XL_BUS_TYPE_DAIO = 64

XL_BUS_TYPE_J1708 = 256

XL_BUS_TYPE_KLINE = 2048

XL_BUS_TYPE_ETHERNET = 4096

XL_BUS_TYPE_A429 = 8192

class can.interfaces.vector.xldefine.XL_OutputMode(value)
Bases: IntEnum

An enumeration.

XL_OUTPUT_MODE_SILENT = 0

XL_OUTPUT_MODE_NORMAL = 1

XL_OUTPUT_MODE_TX_OFF = 2

XL_OUTPUT_MODE_SJA_1000_SILENT = 3

class can.interfaces.vector.xldefine.XL_CANFD_BusParams_CanOpMode(value)
Bases: IntFlag

An enumeration.

XL_BUS_PARAMS_CANOPMODE_CAN20 = 1

XL_BUS_PARAMS_CANOPMODE_CANFD = 2

XL_BUS_PARAMS_CANOPMODE_CANFD_NO_ISO = 8

class can.interfaces.vector.xldefine.XL_Status(value)
Bases: IntEnum

An enumeration.

XL_SUCCESS = 0

XL_PENDING = 1

XL_ERR_QUEUE_IS_EMPTY = 10

4.21. Vector 131

https://docs.python.org/3/library/enum.html#enum.IntFlag
https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/enum.html#enum.IntFlag
https://docs.python.org/3/library/enum.html#enum.IntEnum

python-can, Release 4.3.1

XL_ERR_QUEUE_IS_FULL = 11

XL_ERR_TX_NOT_POSSIBLE = 12

XL_ERR_NO_LICENSE = 14

XL_ERR_WRONG_PARAMETER = 101

XL_ERR_TWICE_REGISTER = 110

XL_ERR_INVALID_CHAN_INDEX = 111

XL_ERR_INVALID_ACCESS = 112

XL_ERR_PORT_IS_OFFLINE = 113

XL_ERR_CHAN_IS_ONLINE = 116

XL_ERR_NOT_IMPLEMENTED = 117

XL_ERR_INVALID_PORT = 118

XL_ERR_HW_NOT_READY = 120

XL_ERR_CMD_TIMEOUT = 121

XL_ERR_CMD_HANDLING = 122

XL_ERR_HW_NOT_PRESENT = 129

XL_ERR_NOTIFY_ALREADY_ACTIVE = 131

XL_ERR_INVALID_TAG = 132

XL_ERR_INVALID_RESERVED_FLD = 133

XL_ERR_INVALID_SIZE = 134

XL_ERR_INSUFFICIENT_BUFFER = 135

XL_ERR_ERROR_CRC = 136

XL_ERR_BAD_EXE_FORMAT = 137

XL_ERR_NO_SYSTEM_RESOURCES = 138

XL_ERR_NOT_FOUND = 139

XL_ERR_INVALID_ADDRESS = 140

XL_ERR_REQ_NOT_ACCEP = 141

XL_ERR_INVALID_LEVEL = 142

XL_ERR_NO_DATA_DETECTED = 143

XL_ERR_INTERNAL_ERROR = 144

XL_ERR_UNEXP_NET_ERR = 145

XL_ERR_INVALID_USER_BUFFER = 146

132 Chapter 4. Hardware Interfaces

python-can, Release 4.3.1

XL_ERR_INVALID_PORT_ACCESS_TYPE = 147

XL_ERR_NO_RESOURCES = 152

XL_ERR_WRONG_CHIP_TYPE = 153

XL_ERR_WRONG_COMMAND = 154

XL_ERR_INVALID_HANDLE = 155

XL_ERR_RESERVED_NOT_ZERO = 157

XL_ERR_INIT_ACCESS_MISSING = 158

XL_ERR_WRONG_VERSION = 160

XL_ERR_CANNOT_OPEN_DRIVER = 201

XL_ERR_WRONG_BUS_TYPE = 202

XL_ERR_DLL_NOT_FOUND = 203

XL_ERR_INVALID_CHANNEL_MASK = 204

XL_ERR_NOT_SUPPORTED = 205

XL_ERR_CONNECTION_BROKEN = 210

XL_ERR_CONNECTION_CLOSED = 211

XL_ERR_INVALID_STREAM_NAME = 212

XL_ERR_CONNECTION_FAILED = 213

XL_ERR_STREAM_NOT_FOUND = 214

XL_ERR_STREAM_NOT_CONNECTED = 215

XL_ERR_QUEUE_OVERRUN = 216

XL_ERROR = 255

XL_ERR_INVALID_DLC = 513

XL_ERR_INVALID_CANID = 514

XL_ERR_INVALID_FDFLAG_MODE20 = 515

XL_ERR_EDL_RTR = 516

XL_ERR_EDL_NOT_SET = 517

XL_ERR_UNKNOWN_FLAG = 518

Additional interface types can be added via the Plugin Interface, or by installing a third party package that utilises the
Plugin Interface.

4.21. Vector 133

python-can, Release 4.3.1

134 Chapter 4. Hardware Interfaces

CHAPTER

FIVE

VIRTUAL INTERFACES

There are quite a few implementations for CAN networks that do not require physical CAN hardware. The built in
virtual interfaces are:

5.1 Virtual

The virtual interface can be used as a way to write OS and driver independent tests. Any VirtualBus instances connecting
to the same channel (from within the same Python process) will receive each others messages.

If messages shall be sent across process or host borders, consider using the Multicast IP Interface and refer to Virtual
Interfaces for a comparison and general discussion of different virtual interfaces.

5.1.1 Example

import can

bus1 = can.interface.Bus('test', interface='virtual')
bus2 = can.interface.Bus('test', interface='virtual')

msg1 = can.Message(arbitration_id=0xabcde, data=[1,2,3])
bus1.send(msg1)
msg2 = bus2.recv()

#assert msg1 == msg2
assert msg1.arbitration_id == msg2.arbitration_id
assert msg1.data == msg2.data
assert msg1.timestamp != msg2.timestamp

import can

bus1 = can.interface.Bus('test', interface='virtual', preserve_timestamps=True)
bus2 = can.interface.Bus('test', interface='virtual')

msg1 = can.Message(timestamp=1639740470.051948, arbitration_id=0xabcde, data=[1,2,3])

Messages sent on bus1 will have their timestamps preserved when received
on bus2
bus1.send(msg1)
msg2 = bus2.recv()

(continues on next page)

135

python-can, Release 4.3.1

(continued from previous page)

assert msg1.arbitration_id == msg2.arbitration_id
assert msg1.data == msg2.data
assert msg1.timestamp == msg2.timestamp

Messages sent on bus2 will not have their timestamps preserved when
received on bus1
bus2.send(msg1)
msg3 = bus1.recv()

assert msg1.arbitration_id == msg3.arbitration_id
assert msg1.data == msg3.data
assert msg1.timestamp != msg3.timestamp

5.1.2 Bus Class Documentation

class can.interfaces.virtual.VirtualBus(channel=None, receive_own_messages=False,
rx_queue_size=0, preserve_timestamps=False,
protocol=CanProtocol.CAN_20, **kwargs)

A virtual CAN bus using an internal message queue. It can be used for example for testing.

In this interface, a channel is an arbitrary object used as an identifier for connected buses.

Implements can.BusABC._detect_available_configs(); see _detect_available_configs() for how
it behaves here.

Note: The timeout when sending a message applies to each receiver individually. This means that sending can
block up to 5 seconds if a message is sent to 5 receivers with the timeout set to 1.0.

Warning: This interface guarantees reliable delivery and message ordering, but does not implement rate
limiting or ID arbitration/prioritization under high loads. Please refer to the section Virtual Interfaces for
more information on this and a comparison to alternatives.

The constructed instance has access to the bus identified by the channel parameter. It is able to see all messages
transmitted on the bus by virtual instances constructed with the same channel identifier.

Parameters

• channel (Any) – The channel identifier. This parameter can be an arbitrary value. The bus
instance will be able to see messages from other virtual bus instances that were created with
the same value.

• receive_own_messages (bool) – If set to True, sent messages will be reflected back on
the input queue.

• rx_queue_size (int) – The size of the reception queue. The reception queue stores mes-
sages until they are read. If the queue reaches its capacity, it will start dropping the oldest
messages to make room for new ones. If set to 0, the queue has an infinite capacity. Be
aware that this can cause memory leaks if messages are read with a lower frequency than
they arrive on the bus.

136 Chapter 5. Virtual Interfaces

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

python-can, Release 4.3.1

• preserve_timestamps (bool) – If set to True, messages transmitted via send()will keep
the timestamp set in the Message instance. Otherwise, the timestamp value will be replaced
with the current system time.

• protocol (CanProtocol) – The protocol implemented by this bus instance. The value
does not affect the operation of the bus instance and can be set to an arbitrary value for
testing purposes.

• kwargs (Any) – Additional keyword arguments passed to the parent constructor.

static _detect_available_configs()

Returns all currently used channels as well as one other currently unused channel.

Note: This method will run into problems if thousands of autodetected buses are used at once.

Return type
List[AutoDetectedConfig]

send(msg, timeout=None)
Transmit a message to the CAN bus.

Override this method to enable the transmit path.

Parameters

• msg (Message) – A message object.

• timeout (float | None) – If > 0, wait up to this many seconds for message to be ACK’ed
or for transmit queue to be ready depending on driver implementation. If timeout is ex-
ceeded, an exception will be raised. Might not be supported by all interfaces. None blocks
indefinitely.

Raises
CanOperationError – If an error occurred while sending

Return type
None

shutdown()

Called to carry out any interface specific cleanup required in shutting down a bus.

This method can be safely called multiple times.

Return type
None

5.2 Multicast IP Interface

This module implements transport of CAN and CAN FD messages over UDP via Multicast IPv4 and IPv6. This virtual
interface allows for communication between multiple processes and even hosts. This differentiates it from the Virtual
interface, which can only passes messages within a single process but does not require a network stack.

It runs on UDP to have the lowest possible latency (as opposed to using TCP), and because normal IP multicast is
inherently unreliable, as the recipients are unknown. This enables ad-hoc networks that do not require a central server
but is also a so-called unreliable network. In practice however, local area networks (LANs) should most often be
sufficiently reliable for this interface to function properly.

5.2. Multicast IP Interface 137

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float

python-can, Release 4.3.1

Note: For an overview over the different virtual buses in this library and beyond, please refer to the section Virtual
Interfaces. It also describes important limitations of this interface.

Please refer to the Bus class documentation below for configuration options and useful resources for specifying multicast
IP addresses.

5.2.1 Supported Platforms

It should work on most Unix systems (including Linux with kernel 2.6.22+ and macOS) but currently not on Windows.

5.2.2 Example

This example should print a single line indicating that a CAN message was successfully sent from bus_1 to bus_2:

import time
import can
from can.interfaces.udp_multicast import UdpMulticastBus

The bus can be created using the can.Bus wrapper class or using UdpMulticastBus␣
→˓directly
with can.Bus(channel=UdpMulticastBus.DEFAULT_GROUP_IPv6, interface='udp_multicast') as␣
→˓bus_1, \

UdpMulticastBus(channel=UdpMulticastBus.DEFAULT_GROUP_IPv6) as bus_2:

register a callback on the second bus that prints messages to the standard out
notifier = can.Notifier(bus_2, [can.Printer()])

create and send a message with the first bus, which should arrive at the second one
message = can.Message(arbitration_id=0x123, data=[1, 2, 3])
bus_1.send(message)

give the notifier enough time to get triggered by the second bus
time.sleep(2.0)

5.2.3 Bus Class Documentation

class can.interfaces.udp_multicast.UdpMulticastBus(channel='ff15:7079:7468:6f6e:6465:6d6f:6d63:6173',
port=43113, hop_limit=1,
receive_own_messages=False, fd=True,
**kwargs)

A virtual interface for CAN communications between multiple processes using UDP over Multicast IP.

It supports IPv4 and IPv6, specified via the channel (which really is just a multicast IP address as a string). You
can also specify the port and the IPv6 hop limit/the IPv4 time to live (TTL).

This bus does not support filtering based on message IDs on the kernel level but instead provides it in user space
(in Python) as a fallback.

Both default addresses should allow for multi-host CAN networks in a normal local area network (LAN) where
multicast is enabled.

138 Chapter 5. Virtual Interfaces

python-can, Release 4.3.1

Note: The auto-detection of available interfaces (see) is implemented using heuristic that checks if the required
socket operations are available. It then returns two configurations, one based on the DEFAULT_GROUP_IPv6
address and another one based on the DEFAULT_GROUP_IPv4 address.

Warning: The parameter receive_own_messages is currently unsupported and setting it to True will raise
an exception.

Warning: This interface does not make guarantees on reliable delivery and message ordering, and also
does not implement rate limiting or ID arbitration/prioritization under high loads. Please refer to the section
Virtual Interfaces for more information on this and a comparison to alternatives.

Parameters

• channel (str) – A multicast IPv4 address (in 224.0.0.0/4) or an IPv6 address (in ff00::/8).
This defines which version of IP is used. See Wikipedia (“Multicast address”) for more
details on the addressing schemes. Defaults to DEFAULT_GROUP_IPv6.

• port (int) – The IP port to read from and write to.

• hop_limit (int) – The hop limit in IPv6 or in IPv4 the time to live (TTL).

• receive_own_messages (bool) – If transmitted messages should also be received by this
bus. CURRENTLY UNSUPPORTED.

• fd (bool) – If CAN-FD frames should be supported. If set to false, an error will be raised
upon sending such a frame and such received frames will be ignored.

• can_filters – See set_filters().

Raises

• RuntimeError – If the msgpack-dependency is not available. It should be installed on all
non Windows platforms via the setup.py requirements.

• NotImplementedError – If the receive_own_messages is passed as True.

Construct and open a CAN bus instance of the specified type.

Subclasses should call though this method with all given parameters as it handles generic tasks like applying
filters.

Parameters

• channel (str) – The can interface identifier. Expected type is backend dependent.

• can_filters – See set_filters() for details.

• kwargs (dict) – Any backend dependent configurations are passed in this dictionary

• port (int)

• hop_limit (int)

• receive_own_messages (bool)

• fd (bool)

Raises

5.2. Multicast IP Interface 139

https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/Multicast_address
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

python-can, Release 4.3.1

• ValueError – If parameters are out of range

• CanInterfaceNotImplementedError – If the driver cannot be accessed

• CanInitializationError – If the bus cannot be initialized

DEFAULT_GROUP_IPv4 = '239.74.163.2'

An arbitrary IPv4 multicast address with “administrative” scope, i.e. only to be routed within administrative
organizational boundaries and not beyond it. It should allow for multi-host CAN networks in a normal IPv4
LAN. This is provided as a default fallback channel if IPv6 is (still) not supported.

DEFAULT_GROUP_IPv6 = 'ff15:7079:7468:6f6e:6465:6d6f:6d63:6173'

An arbitrary IPv6 multicast address with “site-local” scope, i.e. only to be routed within the local physical
network and not beyond it. It should allow for multi-host CAN networks in a normal IPv6 LAN. This is the
default channel and should work with most modern routers if multicast is allowed.

fileno()

Provides the internally used file descriptor of the socket or -1 if not available.

Return type
int

shutdown()

Close all sockets and free up any resources.

Never throws errors and only logs them.

Return type
None

5.3 Comparison

The following table compares some known virtual interfaces:

Name Avail-
abil-
ity

Applicability Implementation

Within
Process

Between
Pro-
cesses

Via (IP)
Net-
works

Without
Central
Server

Transport
Technology

Serial-
ization
Format

virtual (this) in-
cluded

✓ ✓ Singleton & Mu-
tex (reliable)

none

udp_multicast
(doc)

in-
cluded

✓ ✓ ✓ ✓ UDP via IP
multicast (unre-
liable)

custom
using msg-
pack

christiansandberg/
python-can-remote

exter-
nal

✓ ✓ ✓ Websockets via
TCP/IP (reli-
able)

custom bi-
nary

windelbouwman/
virtualcan

exter-
nal

✓ ✓ ✓ ZeroMQ via
TCP/IP (reli-
able)

custom bi-
nary1

1 The only option in this list that implements interoperability with other languages out of the box. For the others (except the first intra-process
one), other programs written in potentially different languages could effortlessly interface with the bus once they mimic the serialization format. The
last one, however, has already implemented the entire bus functionality in C++ and Rust, besides the Python variant.

140 Chapter 5. Virtual Interfaces

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://pypi.org/project/msgpack-python/
https://pypi.org/project/msgpack-python/
https://github.com/christiansandberg/python-can-remote
https://github.com/christiansandberg/python-can-remote
https://github.com/windelbouwman/virtualcan
https://github.com/windelbouwman/virtualcan
https://zeromq.org/

python-can, Release 4.3.1

5.4 Common Limitations

Guaranteed delivery and message ordering is one major point of difference: While in a physical CAN network, a
message is either sent or in queue (or an explicit error occurred), this may not be the case for virtual networks. The
udp_multicast bus for example, drops this property for the benefit of lower latencies by using unreliable UDP/IP
instead of reliable TCP/IP (and because normal IP multicast is inherently unreliable, as the recipients are unknown by
design). The other three buses faithfully model a physical CAN network in this regard: They ensure that all recipients
actually receive (and acknowledge each message), much like in a physical CAN network. They also ensure that messages
are relayed in the order they have arrived at the central server and that messages arrive at the recipients exactly once.
Both is not guaranteed to hold for the best-effort udp_multicast bus as it uses UDP/IP as a transport layer.

Central servers are, however, required by interfaces 3 and 4 (the external tools) to provide these guarantees of message
delivery and message ordering. The central servers receive and distribute the CAN messages to all other bus partici-
pants, unlike in a real physical CAN network. The first intra-process virtual interface only runs within one Python
process, effectively the Python instance of VirtualBus acts as a central server. Notably the udp_multicast bus does
not require a central server.

Arbitration and throughput are two interrelated functions/properties of CAN networks which are typically abstracted
in virtual interfaces. In all four interfaces, an unlimited amount of messages can be sent per unit of time (given the
computational power of the machines and networks that are involved). In a real CAN/CAN FD networks, however,
throughput is usually much more restricted and prioritization of arbitration IDs is thus an important feature once the
bus is starting to get saturated. None of the interfaces presented above support any sort of throttling or ID arbitration
under high loads.

5.4. Common Limitations 141

python-can, Release 4.3.1

142 Chapter 5. Virtual Interfaces

CHAPTER

SIX

PLUGIN INTERFACE

External packages can register new interfaces by using the can.interface entry point in its project configuration.
The format of the entry point depends on your project configuration format (pyproject.toml, setup.cfg or setup.py).

In the following example module defines the location of your bus class inside your package e.g. my_package.
subpackage.bus_module and classname is the name of your can.BusABC subclass.

Note the quotes around can.interface in order to escape the dot .
[project.entry-points."can.interface"]
interface_name = "module:classname"

[options.entry_points]
can.interface =

interface_name = module:classname

from setuptools import setup

setup(
...,
entry_points = {

'can.interface': [
'interface_name = module:classname'

]
}

)

The interface_name can be used to create an instance of the bus in the python-can API:

import can

bus = can.Bus(interface="interface_name", channel=0)

143

python-can, Release 4.3.1

6.1 Example Interface Plugins

The table below lists interface drivers that can be added by installing additional packages that utilise the plugin API.
These modules are optional dependencies of python-can.

Note: The packages listed below are maintained by other authors. Any issues should be reported in their corresponding
repository and not in the python-can repository.

Name Description
python-can-canine CAN Driver for the CANine CAN interface
python-can-cvector Cython based version of the ‘VectorBus’
python-can-remote CAN over network bridge
python-can-sontheim CAN Driver for Sontheim CAN interfaces (e.g. CANfox)

144 Chapter 6. Plugin Interface

https://github.com/tinymovr/python-can-canine
https://github.com/zariiii9003/python-can-cvector
https://github.com/christiansandberg/python-can-remote
https://github.com/MattWoodhead/python-can-sontheim

CHAPTER

SEVEN

OTHER CAN BUS TOOLS

In order to keep the project maintainable, the scope of the package is limited to providing common abstractions to
different hardware devices, and a basic suite of utilities for sending and receiving messages on a CAN bus. Other tools
are available that either extend the functionality of python-can, or provide complementary features that python-can
users might find useful.

Some of these tools are listed below for convenience.

7.1 CAN Message protocols (implemented in Python)

1. SAE J1939 Message Protocol

• The can-j1939 module provides an implementation of the CAN SAE J1939 standard for Python, in-
cluding J1939-22. can-j1939 uses python-can to provide support for multiple hardware interfaces.

2. CIA CANopen

• The canopen module provides an implementation of the CIA CANopen protocol, aiming to be used
for automation and testing purposes

3. ISO 15765-2 (ISO TP)

• The can-isotp module provides an implementation of the ISO TP CAN protocol for sending data pack-
ets via a CAN transport layer.

4. UDS

• The python-uds module is a communication protocol agnostic implementation of the Unified Diagnos-
tic Services (UDS) protocol defined in ISO 14229-1, although it does have extensions for performing
UDS over CAN utilising the ISO TP protocol. This module has not been updated for some time.

• The uds module is another tool that implements the UDS protocol, although it does have extensions
for performing UDS over CAN utilising the ISO TP protocol. This module has not been updated for
some time.

5. XCP

• The pyxcp module implements the Universal Measurement and Calibration Protocol (XCP). The pur-
pose of XCP is to adjust parameters and acquire current values of internal variables in an ECU.

145

https://github.com/juergenH87/python-can-j1939
https://github.com/juergenH87/python-can-j1939
https://canopen.readthedocs.io/en/latest/
https://can-isotp.readthedocs.io/en/latest/
https://python-uds.readthedocs.io/en/latest/index.html
https://uds.readthedocs.io/en/latest/
https://pyxcp.readthedocs.io/en/latest/

python-can, Release 4.3.1

7.2 CAN Frame Parsing tools etc. (implemented in Python)

1. CAN Message / Database scripting

• The cantools package provides multiple methods for interacting with can message database files, and
using these files to monitor live busses with a command line monitor tool.

2. CAN Message / Log Decoding

• The canmatrix module provides methods for converting between multiple popular message frame def-
inition file formats (e.g. .DBC files, .KCD files, .ARXML files etc.).

• The pretty_j1939 module can be used to post-process CAN logs of J1939 traffic into human readable
terminal prints or into a JSON file for consumption elsewhere in your scripts.

7.3 Other CAN related tools, programs etc.

1. Micropython CAN class

• A CAN class is available for the original micropython pyboard, with much of the same functionality
as is available with python-can (but with a different API!).

2. ASAM MDF Files

• The asammdf module provides many methods for processing ASAM (Association for Standardization
of Automation and Measuring Systems) MDF (Measurement Data Format) files.

Note: See also the available plugins for python-can in Plugin Interface.

146 Chapter 7. Other CAN bus tools

https://cantools.readthedocs.io/en/latest/
https://canmatrix.readthedocs.io/en/latest/
https://github.com/nmfta-repo/pretty_j1939
https://docs.micropython.org/en/latest/library/pyb.CAN.html
https://asammdf.readthedocs.io/en/master/

CHAPTER

EIGHT

SCRIPTS

The following modules are callable from python-can.

They can be called for example by python -m can.logger or can_logger (if installed using pip).

8.1 can.logger

Command line help, called with --help:

$ python -m can.logger -h
ldf is not supported
xls is not supported
xlsx is not supported
yaml is not supported
usage: logger.py [-h] [-c CHANNEL]

[-i {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,neousys,neovi,
→˓nican,nixnet,pcan,robotell,seeedstudio,serial,slcan,socketcan,socketcand,systec,udp_
→˓multicast,usb2can,vector,virtual}]

[-b BITRATE] [--fd] [--data_bitrate DATA_BITRATE]
[-f LOG_FILE] [-a] [-s FILE_SIZE] [-v]
[--filter {<can_id>:<can_mask>,<can_id>~<can_mask>} [{<can_id>:<can_

→˓mask>,<can_id>~<can_mask>} ...]]
[--active | --passive]
...

Log CAN traffic, printing messages to stdout or to a given file.

positional arguments:
extra_args The remaining arguments will be used for the interface

and logger/player initialisation. For example, `-i
vector -c 1 --app-name=MyCanApp` is the equivalent to
opening the bus with `Bus('vector', channel=1,
app_name='MyCanApp')

options:
-h, --help show this help message and exit
-c CHANNEL, --channel CHANNEL

Most backend interfaces require some sort of channel.
For example with the serial interface the channel
might be a rfcomm device: "/dev/rfcomm0". With the

(continues on next page)

147

python-can, Release 4.3.1

(continued from previous page)

socketcan interface valid channel examples include:
"can0", "vcan0".

-i {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,neousys,neovi,nican,nixnet,pcan,
→˓robotell,seeedstudio,serial,slcan,socketcan,socketcand,systec,udp_multicast,usb2can,
→˓vector,virtual}, --interface {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,
→˓neousys,neovi,nican,nixnet,pcan,robotell,seeedstudio,serial,slcan,socketcan,socketcand,
→˓systec,udp_multicast,usb2can,vector,virtual}

Specify the backend CAN interface to use. If left
blank, fall back to reading from configuration files.

-b BITRATE, --bitrate BITRATE
Bitrate to use for the CAN bus.

--fd Activate CAN-FD support
--data_bitrate DATA_BITRATE

Bitrate to use for the data phase in case of CAN-FD.
-f LOG_FILE, --file_name LOG_FILE

Path and base log filename, for supported types see
can.Logger.

-a, --append Append to the log file if it already exists.
-s FILE_SIZE, --file_size FILE_SIZE

Maximum file size in bytes. Rotate log file when size
threshold is reached. (The resulting file sizes will
be consistent, but are not guaranteed to be exactly
what is specified here due to the rollover conditions
being logger implementation specific.)

-v How much information do you want to see at the command
line? You can add several of these e.g., -vv is DEBUG

--filter {<can_id>:<can_mask>,<can_id>~<can_mask>} [{<can_id>:<can_mask>,<can_id>~<can_
→˓mask>} ...]

R|Space separated CAN filters for the given CAN
interface: <can_id>:<can_mask> (matches when
<received_can_id> & mask == can_id & mask)
<can_id>~<can_mask> (matches when <received_can_id> &
mask != can_id & mask) Fx to show only frames with ID
0x100 to 0x103 and 0x200 to 0x20F: python -m
can.viewer -f 100:7FC 200:7F0 Note that the ID and
mask are always interpreted as hex values

--active Start the bus as active, this is applied by default.
--passive Start the bus as passive.

8.2 can.player

$ python -m can.player -h
ldf is not supported
xls is not supported
xlsx is not supported
yaml is not supported
usage: player.py [-h] [-c CHANNEL]

[-i {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,neousys,neovi,
→˓nican,nixnet,pcan,robotell,seeedstudio,serial,slcan,socketcan,socketcand,systec,udp_
→˓multicast,usb2can,vector,virtual}]

(continues on next page)

148 Chapter 8. Scripts

python-can, Release 4.3.1

(continued from previous page)

[-b BITRATE] [--fd] [--data_bitrate DATA_BITRATE]
[-f LOG_FILE] [-v] [--ignore-timestamps] [--error-frames]
[-g GAP] [-s SKIP]
... input-file

Replay CAN traffic.

positional arguments:
extra_args The remaining arguments will be used for the interface

and logger/player initialisation. For example, `-i
vector -c 1 --app-name=MyCanApp` is the equivalent to
opening the bus with `Bus('vector', channel=1,
app_name='MyCanApp')

input-file The file to replay. For supported types see
can.LogReader.

options:
-h, --help show this help message and exit
-c CHANNEL, --channel CHANNEL

Most backend interfaces require some sort of channel.
For example with the serial interface the channel
might be a rfcomm device: "/dev/rfcomm0". With the
socketcan interface valid channel examples include:
"can0", "vcan0".

-i {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,neousys,neovi,nican,nixnet,pcan,
→˓robotell,seeedstudio,serial,slcan,socketcan,socketcand,systec,udp_multicast,usb2can,
→˓vector,virtual}, --interface {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,
→˓neousys,neovi,nican,nixnet,pcan,robotell,seeedstudio,serial,slcan,socketcan,socketcand,
→˓systec,udp_multicast,usb2can,vector,virtual}

Specify the backend CAN interface to use. If left
blank, fall back to reading from configuration files.

-b BITRATE, --bitrate BITRATE
Bitrate to use for the CAN bus.

--fd Activate CAN-FD support
--data_bitrate DATA_BITRATE

Bitrate to use for the data phase in case of CAN-FD.
-f LOG_FILE, --file_name LOG_FILE

Path and base log filename, for supported types see
can.LogReader.

-v Also print can frames to stdout. You can add several
of these to enable debugging

--ignore-timestamps Ignore timestamps (send all frames immediately with
minimum gap between frames)

--error-frames Also send error frames to the interface.
-g GAP, --gap GAP <s> minimum time between replayed frames
-s SKIP, --skip SKIP <s> skip gaps greater than 's' seconds

8.2. can.player 149

python-can, Release 4.3.1

8.3 can.viewer

A screenshot of the application can be seen below:

The first column is the number of times a frame with the particular ID that has been received, next is the timestamp
of the frame relative to the first received message. The third column is the time between the current frame relative to
the previous one. Next is the length of the frame, the data and then the decoded data converted according to the -d
argument. The top red row indicates an error frame. There are several keyboard shortcuts that can be used with the
viewer script, they function as follows:

• ESCAPE - Quit the viewer script

• q - as ESCAPE

150 Chapter 8. Scripts

python-can, Release 4.3.1

• c - Clear the stored frames

• s - Sort the stored frames

• h - Toggle highlighting of changed bytes in the data field - see the below image

• SPACE - Pause the viewer

• UP/DOWN - Scroll the viewer

A byte in the data field is highlighted blue if the value is different from the last time the message was received.

8.3.1 Command line arguments

By default the can.viewer uses the SocketCAN interface. All interfaces are supported and can be specified using the
-i argument or configured following Configuration.

The full usage page can be seen below:

$ python -m can.viewer -h
ldf is not supported
xls is not supported
xlsx is not supported
yaml is not supported
Usage: python -m can.viewer [-c CHANNEL]

[-i {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,
→˓neousys,neovi,nican,nixnet,pcan,robotell,seeedstudio,serial,slcan,socketcan,socketcand,
→˓systec,udp_multicast,usb2can,vector,virtual}]

[-b BITRATE] [--fd] [--data_bitrate DATA_BITRATE]
[-h] [--version]
[-d ('{<id>:<format>,<id>:<format>:<scaling1>:...:<scalingN>,

→˓file.txt}',)]
[-f ('{<can_id>:<can_mask>,<can_id>~<can_mask>}',)]
[-v]
('extra_args',)

A simple CAN viewer terminal application written in Python

positional arguments:
extra_args The remaining arguments will be used for the interface

and logger/player initialisation. For example, `-i
vector -c 1 --app-name=MyCanApp` is the equivalent to
opening the bus with `Bus('vector', channel=1,
app_name='MyCanApp')

(continues on next page)

8.3. can.viewer 151

python-can, Release 4.3.1

(continued from previous page)

options:
-c, --channel CHANNEL

Most backend interfaces require some sort of channel.
For example with the serial interface the channel
might be a rfcomm device: "/dev/rfcomm0". With the
socketcan interface valid channel examples include:
"can0", "vcan0".

-i, --interface {canalystii,cantact,etas,gs_usb,iscan,ixxat,kvaser,neousys,neovi,nican,
→˓nixnet,pcan,robotell,seeedstudio,serial,slcan,socketcan,socketcand,systec,udp_
→˓multicast,usb2can,vector,virtual}

Specify the backend CAN interface to use. If left
blank, fall back to reading from configuration files.

-b, --bitrate BITRATE
Bitrate to use for the CAN bus.

--fd Activate CAN-FD support
--data_bitrate DATA_BITRATE

Bitrate to use for the data phase in case of CAN-FD.

Optional arguments:
-h, --help Show this help message and exit
--version Show program's version number and exit
-d, --decode ('{<id>:<format>,<id>:<format>:<scaling1>:...:<scalingN>,file.txt}',)

Specify how to convert the raw bytes into real values.
The ID of the frame is given as the first argument and the␣

→˓format as the second.
The Python struct package is used to unpack the received data
where the format characters have the following meaning:

< = little-endian, > = big-endian
x = pad byte
c = char
? = bool
b = int8_t, B = uint8_t
h = int16, H = uint16
l = int32_t, L = uint32_t
q = int64_t, Q = uint64_t
f = float (32-bits), d = double (64-bits)

Fx to convert six bytes with ID 0x100 into uint8_t, uint16 and␣
→˓uint32_t:

$ python -m can.viewer -d "100:<BHL"
Note that the IDs are always interpreted as hex values.
An optional conversion from integers to real units can be given
as additional arguments. In order to convert from raw integer
values the values are divided with the corresponding scaling␣

→˓value,
similarly the values are multiplied by the scaling value in order
to convert from real units to raw integer values.
Fx lets say the uint8_t needs no conversion, but the uint16 and␣

→˓the uint32_t
needs to be divided by 10 and 100 respectively:
$ python -m can.viewer -d "101:<BHL:1:10.0:100.0"

Be aware that integer division is performed if the scaling value␣
→˓is an integer.

(continues on next page)

152 Chapter 8. Scripts

python-can, Release 4.3.1

(continued from previous page)

Multiple arguments are separated by spaces:
$ python -m can.viewer -d "100:<BHL" "101:<BHL:1:10.0:100.0"

Alternatively a file containing the conversion strings separated␣
→˓by new lines

can be given as input:
$ cat file.txt

100:<BHL
101:<BHL:1:10.0:100.0

$ python -m can.viewer -d file.txt
-f, --filter ('{<can_id>:<can_mask>,<can_id>~<can_mask>}',)

Space separated CAN filters for the given CAN interface:
<can_id>:<can_mask> (matches when <received_can_id> & mask␣

→˓== can_id & mask)
<can_id>~<can_mask> (matches when <received_can_id> & mask␣

→˓!= can_id & mask)
Fx to show only frames with ID 0x100 to 0x103 and 0x200 to 0x20F:

python -m can.viewer -f 100:7FC 200:7F0
Note that the ID and mask are always interpreted as hex values

-v How much information do you want to see at the command
line? You can add several of these e.g., -vv is DEBUG

Shortcuts:
+---------+-------------------------------+
| Key | Description |
+---------+-------------------------------+
ESQ/q	Exit the viewer
c	Clear the stored frames
s	Sort the stored frames
h	Toggle highlight byte changes
SPACE	Pause the viewer
UP/DOWN	Scroll the viewer
+---------+-------------------------------+

8.4 can.logconvert

$ python -m can.logconvert -h
ldf is not supported
xls is not supported
xlsx is not supported
yaml is not supported
usage: logconvert.py [-h] [-s FILE_SIZE] INFILE OUTFILE

Convert a log file from one format to another.

positional arguments:
INFILE Input filename. The type is dependent on the suffix,

see can.LogReader.
OUTFILE Output filename. The type is dependent on the suffix,

see can.Logger.

(continues on next page)

8.4. can.logconvert 153

python-can, Release 4.3.1

(continued from previous page)

options:
-h, --help show this help message and exit
-s FILE_SIZE, --file_size FILE_SIZE

Maximum file size in bytes. Rotate log file when size
threshold is reached.

154 Chapter 8. Scripts

CHAPTER

NINE

DEVELOPER’S OVERVIEW

9.1 Contributing

Contribute to source code, documentation, examples and report issues: https://github.com/hardbyte/python-can

Note that the latest released version on PyPi may be significantly behind the main branch. Please open any feature
requests against the main branch

There is also a python-can mailing list for development discussion.

Some more information about the internals of this library can be found in the chapter Internal API . There is also
additional information on extending the can.io module.

9.2 Pre-releases

The latest pre-release can be installed with:

pip install --upgrade --pre python-can

9.3 Building & Installing

The following assumes that the commands are executed from the root of the repository:

The project can be built with:

pipx run build
pipx run twine check dist/*

The project can be installed in editable mode with:

pip install -e .

The unit tests can be run with:

pipx run tox -e py

The documentation can be built with:

pip install -r doc/doc-requirements.txt
python -m sphinx -an doc build

155

https://github.com/hardbyte/python-can
https://groups.google.com/forum/#!forum/python-can

python-can, Release 4.3.1

The linters can be run with:

pip install -e .[lint]
black --check can
mypy can
ruff check can
pylint can/**.py can/io doc/conf.py examples/**.py can/interfaces/socketcan

9.4 Creating a new interface/backend

These steps are a guideline on how to add a new backend to python-can.

• Create a module (either a *.py or an entire subdirectory depending on the complexity) inside can.interfaces

• Implement the central part of the backend: the bus class that extends can.BusABC. See Extending the BusABC
class for more info on this one!

• Register your backend bus class in BACKENDS in the file can.interfaces.__init__.py.

• Add docs where appropriate. At a minimum add to doc/interfaces.rst and add a new interface specific
document in doc/interface/*. It should document the supported platforms and also the hardware/software it
requires. A small snippet of how to install the dependencies would also be useful to get people started without
much friction.

• Also, don’t forget to document your classes, methods and function with docstrings.

• Add tests in test/* where appropriate. To get started, have a look at back2back_test.py: Simply add a test
case like BasicTestSocketCan and some basic tests will be executed for the new interface.

Attention: We strongly recommend using the Plugin Interface to extend python-can. Publish a python package
that contains your can.BusABC subclass and use it within the python-can API. We will mention your package inside
this documentation and add it as an optional dependency.

9.5 Code Structure

The modules in python-can are:

Module Description
interfaces Contains interface dependent code.
bus Contains the interface independent Bus object.
message Contains the interface independent Message object.
io Contains a range of file readers and writers.
broadcastmanager Contains interface independent broadcast manager code.

156 Chapter 9. Developer’s Overview

python-can, Release 4.3.1

9.6 Creating a new Release

• Release from the main branch (except for pre-releases).

• Update the library version in __init__.py using semantic versioning.

• Check if any deprecations are pending.

• Run all tests and examples against available hardware.

• Update CONTRIBUTORS.txt with any new contributors.

• For larger changes update doc/history.rst.

• Sanity check that documentation has stayed inline with code.

• Create a temporary virtual environment. Run python setup.py install and tox.

• Create and upload the distribution: python setup.py sdist bdist_wheel.

• Sign the packages with gpg gpg --detach-sign -a dist/python_can-X.Y.Z-py3-none-any.whl.

• Upload with twine twine upload dist/python-can-X.Y.Z*.

• In a new virtual env check that the package can be installed with pip: pip install python-can==X.Y.Z.

• Create a new tag in the repository.

• Check the release on PyPi, Read the Docs and GitHub.

9.6. Creating a new Release 157

http://semver.org
https://pypi.org/project/python-can/#history
https://readthedocs.org/projects/python-can/versions/
https://github.com/hardbyte/python-can/releases

python-can, Release 4.3.1

158 Chapter 9. Developer’s Overview

CHAPTER

TEN

HISTORY

10.1 Background

Originally written at Dynamic Controls for internal use testing and prototyping wheelchair components.

Maintenance was taken over and the project was open sourced by Brian Thorne in 2010.

10.2 Acknowledgements

Originally written by Ben Powell as a thin wrapper around the Kvaser SDK to support the leaf device.

Support for linux socketcan was added by Rose Lu as a summer coding project in 2011. The socketcan interface was
helped immensely by Phil Dixon who wrote a leaf-socketcan driver for Linux.

The pcan interface was contributed by Albert Bloomfield in 2013. Support for pcan on Mac was added by Kristian
Sloth Lauszus in 2018.

The usb2can interface was contributed by Joshua Villyard in 2015.

The IXXAT VCI interface was contributed by Giuseppe Corbelli and funded by Weightpack in 2016.

The NI-CAN and virtual interfaces plus the ASCII and BLF loggers were contributed by Christian Sandberg in 2016
and 2017. The BLF format is based on a C++ library by Toby Lorenz.

The slcan interface, ASCII listener and log logger and listener were contributed by Eduard Bröcker in 2017.

The NeoVi interface for ICS (Intrepid Control Systems) devices was contributed by Pierre-Luc Tessier Gagné in 2017.

Many improvements all over the library, cleanups, unifications as well as more comprehensive documentation and CI
testing was contributed by Felix Divo in 2017 and 2018.

The CAN viewer terminal script was contributed by Kristian Sloth Lauszus in 2018.

The CANalyst-II interface was contributed by Shaoyu Meng in 2018.

@deonvdw added support for the Robotell interface in 2019.

Felix Divo and Karl Ding added type hints for the core library and many interfaces leading up to the 4.0 release.

Eric Evenchick added support for the CANtact devices in 2020.

Felix Divo added an interprocess virtual bus interface in 2020.

@jxltom added the gs_usb interface in 2020 supporting Geschwister Schneider USB/CAN devices and bytewerk.org
candleLight USB CAN devices such as candlelight, canable, cantact, etc.

@jaesc added the nixnet interface in 2021 supporting NI-XNET devices from National Instruments.

159

https://dynamiccontrols.com
http://www.weightpack.com

python-can, Release 4.3.1

Tuukka Pasanen @illuusio added the neousys interface in 2021.

Francisco Javier Burgos Maciá @fjburgos added ixxat FD support.

@domologic contributed a socketcand interface in 2021.

Felix N @felixn contributed the ETAS interface in 2021.

Felix Divo unified exception handling across every interface in the lead up to the 4.0 release.

Felix Divo prepared the python-can 4.0 release.

10.3 Support for CAN within Python

Python natively supports the CAN protocol from version 3.3 on, if running on Linux (with a sufficiently new kernel):

Python version Feature Link
3.3 Initial SocketCAN support Docs
3.4 Broadcast Management (BCM) commands are natively supported Docs
3.5 CAN FD support Docs
3.7 Support for CAN ISO-TP Docs
3.9 Native support for joining CAN filters Docs

160 Chapter 10. History

https://docs.python.org/3/library/socket.html#socket.AF_CAN
https://docs.python.org/3/library/socket.html#socket.CAN_BCM
https://docs.python.org/3/library/socket.html#socket.CAN_RAW_FD_FRAMES
https://docs.python.org/3/library/socket.html#socket.CAN_ISOTP
https://docs.python.org/3/library/socket.html#socket.CAN_RAW_JOIN_FILTERS

CHAPTER

ELEVEN

KNOWN BUGS

See the project bug tracker on github. Patches and pull requests very welcome!

Documentation generated

Apr 29, 2024

161

https://github.com/hardbyte/python-can/issues

python-can, Release 4.3.1

162 Chapter 11. Known Bugs

PYTHON MODULE INDEX

c
can, 16
can.broadcastmanager, 42
can.exceptions, 47
can.io.generic, 63
can.util, 65

163

python-can, Release 4.3.1

164 Python Module Index

INDEX

Symbols
__init__() (can.BusABC method), 60
__iter__() (can.BusABC method), 61
__str__() (can.BusABC method), 61
__str__() (can.Message method), 20
__weakref__ (can.BusABC attribute), 61
_apply_filters() (can.BusABC method), 62
_detect_available_configs() (can.BusABC static

method), 62
_detect_available_configs()

(can.interfaces.virtual.VirtualBus static
method), 137

_recv_internal() (can.BusABC method), 61
_recv_internal() (can.interfaces.serial.serial_can.SerialBus

method), 98
_send_periodic_internal() (can.BusABC method),

62

A
ACTIVE (can.BusState attribute), 15
add_bus() (can.Notifier method), 21
add_listener() (can.Notifier method), 21
application_id (can.BLFWriter attribute), 34
arbitration_id (can.Message attribute), 17
ASCReader (class in can), 32
ASCWriter (class in can), 31
AsyncBufferedReader (class in can), 24

B
BaseIOHandler (class in can.io.generic), 63
BaseRotatingLogger (class in can.io), 37
BinaryIOMessageReader (class in can.io.generic), 65
BinaryIOMessageWriter (class in can.io.generic), 64
bitrate (can.BitTiming property), 54
bitrate_switch (can.Message attribute), 19
BitTiming (class in can), 51
BitTimingFd (class in can), 55
BLFReader (class in can), 34
BLFWriter (class in can), 33
blocking_receive() (can.interfaces.usb2can.Usb2CanAbstractionLayer

method), 120

blocking_send() (can.interfaces.usb2can.Usb2CanAbstractionLayer
method), 120

brp (can.BitTiming property), 54
btr0 (can.BitTiming property), 54
btr1 (can.BitTiming property), 54
BufferedReader (class in can), 24
Bus() (in module can), 12
bus_load (can.interfaces.kvaser.structures.BusStatistics

property), 86
BusABC (class in can), 13
BusState (class in can), 15
BusStatistics (class in

can.interfaces.kvaser.structures), 86

C
can

module, 16
can.broadcastmanager

module, 42
can.exceptions

module, 47
can.io.generic

module, 63
can.util

module, 65
CAN_20 (can.bus.CanProtocol attribute), 16
CAN_FD (can.bus.CanProtocol attribute), 16
CAN_XL (can.bus.CanProtocol attribute), 16
CanalError, 120
CANalystIIBus (class in can.interfaces.canalystii), 72
CanError, 47
CanInitializationError, 48
CanInterfaceNotImplementedError, 48
CanOperationError, 48
CanProtocol (class in can.bus), 15
CantactBus (class in can.interfaces.cantact), 72
CanTimeoutError, 49
CanutilsLogReader (class in can), 33
CanutilsLogWriter (class in can), 32
cast_from_string() (in module can.util), 65
channel (can.Message attribute), 18
channel2int() (in module can.util), 65

165

python-can, Release 4.3.1

channel_info (can.BusABC attribute), 13
channel_info (can.interfaces.socketcan.SocketcanBus

attribute), 109
check_or_adjust_timing_clock() (in module

can.util), 65
close() (can.interfaces.usb2can.Usb2CanAbstractionLayer

method), 120
create_filter() (can.interfaces.systec.ucanbus.UcanBus

static method), 116
CSVReader (class in can), 29
CSVWriter (class in can), 28
CyclicSendTask (class in

can.interfaces.ixxat.canlib_vcinpl), 81
CyclicSendTask (class in

can.interfaces.ixxat.canlib_vcinpl2), 83
CyclicSendTask (class in can.interfaces.socketcan),

107
CyclicSendTaskABC (class in can.broadcastmanager),

45
CyclicTask (class in can.broadcastmanager), 45

D
data (can.Message attribute), 18
data_bitrate (can.BitTimingFd property), 58
data_brp (can.BitTimingFd property), 58
data_sample_point (can.BitTimingFd property), 58
data_sjw (can.BitTimingFd property), 58
data_tq (can.BitTimingFd property), 58
data_tseg1 (can.BitTimingFd property), 58
data_tseg2 (can.BitTimingFd property), 58
dbt (can.BitTimingFd property), 58
DEFAULT_GROUP_IPv4 (can.interfaces.udp_multicast.UdpMulticastBus

attribute), 140
DEFAULT_GROUP_IPv6 (can.interfaces.udp_multicast.UdpMulticastBus

attribute), 140
deprecated_args_alias() (in module can.util), 66
detect_available_configs() (in module can), 59
detect_beacon() (in module

can.interfaces.socketcand), 113
dlc (can.Message attribute), 18
dlc2len() (in module can.util), 66
do_rollover() (can.io.BaseRotatingLogger method),

37
do_rollover() (can.SizedRotatingLogger method), 39

E
equals() (can.Message method), 20
err_frame (can.interfaces.kvaser.structures.BusStatistics

property), 86
ERROR (can.BusState attribute), 15
error_check() (in module can.exceptions), 49
error_state_indicator (can.Message attribute), 19
EtasBus (class in can.interfaces.etas), 74
exception (can.Notifier attribute), 21

ext_data (can.interfaces.kvaser.structures.BusStatistics
property), 86

ext_remote (can.interfaces.kvaser.structures.BusStatistics
property), 86

F
f_clock (can.BitTiming property), 54
f_clock (can.BitTimingFd property), 57
file_size() (can.BLFWriter method), 34
file_size() (can.io.generic.FileIOMessageWriter

method), 64
file_size() (can.MF4Writer method), 35
file_size() (can.Printer method), 28
FileIOMessageWriter (class in can.io.generic), 64
fileno() (can.interfaces.udp_multicast.UdpMulticastBus

method), 140
filters (can.BusABC property), 13
filters (can.interfaces.socketcan.SocketcanBus prop-

erty), 109
flash() (can.interfaces.kvaser.canlib.KvaserBus

method), 85
flash() (can.interfaces.pcan.PcanBus method), 93
flush_tx_buffer() (can.BusABC method), 13
flush_tx_buffer() (can.interfaces.etas.EtasBus

method), 74
flush_tx_buffer() (can.interfaces.ixxat.canlib_vcinpl.IXXATBus

method), 81
flush_tx_buffer() (can.interfaces.ixxat.canlib_vcinpl2.IXXATBus

method), 82
flush_tx_buffer() (can.interfaces.ixxat.IXXATBus

method), 79
flush_tx_buffer() (can.interfaces.kvaser.canlib.KvaserBus

method), 85
flush_tx_buffer() (can.interfaces.socketcan.SocketcanBus

method), 109
flush_tx_buffer() (can.interfaces.systec.ucanbus.UcanBus

method), 116
flush_tx_buffer() (can.interfaces.vector.VectorBus

method), 123
from_bitrate_and_segments() (can.BitTiming class

method), 52
from_bitrate_and_segments() (can.BitTimingFd

class method), 56
from_registers() (can.BitTiming class method), 53
from_sample_point() (can.BitTiming class method),

53
from_sample_point() (can.BitTimingFd class

method), 57

G
get_application_config()

(can.interfaces.vector.VectorBus static method),
123

166 Index

python-can, Release 4.3.1

get_channel_configs() (in module
can.interfaces.vector), 126

get_device_number() (can.interfaces.pcan.PcanBus
method), 93

get_library_version()
(can.interfaces.usb2can.Usb2CanAbstractionLayer
method), 120

get_message() (can.AsyncBufferedReader method), 24
get_message() (can.BufferedReader method), 24
GET_MESSAGE_TIMEOUT (can.SqliteWriter attribute), 30
get_serial_number()

(can.interfaces.robotell.robotellBus method),
95

get_serial_number() (can.interfaces.slcan.slcanBus
method), 101

get_statistics() (can.interfaces.usb2can.Usb2CanAbstractionLayer
method), 120

get_stats() (can.interfaces.kvaser.canlib.KvaserBus
method), 86

get_status() (can.interfaces.usb2can.Usb2CanAbstractionLayer
method), 120

get_vendor_string()
(can.interfaces.usb2can.Usb2CanAbstractionLayer
method), 120

get_version() (can.interfaces.slcan.slcanBus method),
101

get_version() (can.interfaces.usb2can.Usb2CanAbstractionLayer
method), 120

GsUsbBus (class in can.interfaces.gs_usb), 76

I
ICSApiError, 88
ICSInitializationError, 88
ICSOperationError, 89
is_error_frame (can.Message attribute), 19
is_extended_id (can.Message attribute), 18
is_fd (can.Message attribute), 19
is_remote_frame (can.Message attribute), 19
is_rx (can.Message attribute), 19
IscanBus (class in can.interfaces.iscan), 77
IscanError, 77
iterate_from_sample_point() (can.BitTiming class

method), 53
iterate_from_sample_point() (can.BitTimingFd

class method), 57
IXXATBus (class in can.interfaces.ixxat), 79
IXXATBus (class in can.interfaces.ixxat.canlib_vcinpl),

80
IXXATBus (class in can.interfaces.ixxat.canlib_vcinpl2),

82

K
KvaserBus (class in can.interfaces.kvaser.canlib), 84

L
len2dlc() (in module can.util), 66
LimitedDurationCyclicSendTaskABC (class in

can.broadcastmanager), 45
Listener (class in can), 22
load_config() (in module can.util), 67
load_environment_config() (in module can.util), 67
load_file_config() (in module can.util), 68
log_event() (can.ASCWriter method), 31
log_event() (can.BLFWriter method), 34
Logger() (in module can), 26
LogReader() (in module can), 26

M
MAX_BUFFER_SIZE_BEFORE_WRITES (can.SqliteWriter

attribute), 30
max_container_size (can.BLFWriter attribute), 34
MAX_TIME_BETWEEN_WRITES (can.SqliteWriter at-

tribute), 30
Message (class in can), 16
MESSAGE_READERS (in module can.io.player), 27
MESSAGE_WRITERS (in module can.io.logger), 27
MessageReader (class in can.io.generic), 64
MessageSync (class in can), 40
MessageWriter (class in can.io.generic), 63
MF4Reader (class in can), 35
MF4Writer (class in can), 35
ModifiableCyclicTaskABC (class in can), 45
modify_data() (can.interfaces.socketcan.CyclicSendTask

method), 107
modify_data() (can.ModifiableCyclicTaskABC

method), 46
module

can, 16
can.broadcastmanager, 42
can.exceptions, 47
can.io.generic, 63
can.util, 65

MultiRateCyclicSendTaskABC (class in
can.broadcastmanager), 45

N
namer (can.io.BaseRotatingLogger attribute), 37
nbt (can.BitTiming property), 54
nbt (can.BitTimingFd property), 58
NeousysBus (class in can.interfaces.neousys), 86
NeoViBus (class in can.interfaces.ics_neovi), 88
NicanBus (class in can.interfaces.nican), 89
NicanError, 90
NicanInitializationError, 90
NiXNETcanBus (class in can.interfaces.nixnet), 90
nof_samples (can.BitTiming property), 54
nom_bitrate (can.BitTimingFd property), 58

Index 167

python-can, Release 4.3.1

nom_brp (can.BitTimingFd property), 58
nom_sample_point (can.BitTimingFd property), 58
nom_sjw (can.BitTimingFd property), 58
nom_tq (can.BitTimingFd property), 58
nom_tseg1 (can.BitTimingFd property), 58
nom_tseg2 (can.BitTimingFd property), 58
Notifier (class in can), 21

O
on_error() (can.Listener method), 23
on_message_received() (can.ASCWriter method), 32
on_message_received() (can.AsyncBufferedReader

method), 25
on_message_received() (can.BLFWriter method), 34
on_message_received() (can.BufferedReader

method), 24
on_message_received() (can.CanutilsLogWriter

method), 33
on_message_received() (can.CSVWriter method), 28
on_message_received() (can.io.BaseRotatingLogger

method), 37
on_message_received() (can.Listener method), 23
on_message_received() (can.MF4Writer method), 35
on_message_received() (can.Printer method), 28
on_message_received() (can.RedirectReader

method), 25
on_message_received() (can.TRCWriter method), 36
open() (can.interfaces.usb2can.Usb2CanAbstractionLayer

method), 120
oscillator_tolerance() (can.BitTiming method), 54
oscillator_tolerance() (can.BitTimingFd method),

58
overruns (can.interfaces.kvaser.structures.BusStatistics

property), 86

P
PASSIVE (can.BusState attribute), 15
pause() (can.interfaces.ixxat.canlib_vcinpl.CyclicSendTask

method), 81
pause() (can.interfaces.ixxat.canlib_vcinpl2.CyclicSendTask

method), 83
PcanBus (class in can.interfaces.pcan), 92
popup_vector_hw_configuration()

(can.interfaces.vector.VectorBus static method),
123

Printer (class in can), 27
protocol (can.BusABC property), 13
protocol (can.interfaces.socketcan.SocketcanBus prop-

erty), 109

R
read_all() (can.SqliteReader method), 31
receive() (can.interfaces.usb2can.Usb2CanAbstractionLayer

method), 121

recreate_with_f_clock() (can.BitTiming method),
54

recreate_with_f_clock() (can.BitTimingFd
method), 59

recv() (can.BusABC method), 13
recv() (can.interfaces.socketcan.SocketcanBus method),

109
recv() (can.interfaces.vector.VectorBus method), 124
RECV_LOGGING_LEVEL (can.BusABC attribute), 13
RECV_LOGGING_LEVEL (can.interfaces.socketcan.SocketcanBus

attribute), 109
RedirectReader (class in can), 25
remove_listener() (can.Notifier method), 21
reset() (can.interfaces.nixnet.NiXNETcanBus method),

91
reset() (can.interfaces.pcan.PcanBus method), 93
RestartableCyclicTaskABC (class in can), 46
robotellBus (class in can.interfaces.robotell), 95
rollover_count (can.io.BaseRotatingLogger attribute),

37
rotate() (can.io.BaseRotatingLogger method), 37
rotation_filename() (can.io.BaseRotatingLogger

method), 38
rotator (can.io.BaseRotatingLogger attribute), 38

S
sample_point (can.BitTiming property), 54
send() (can.BusABC method), 13
send() (can.interfaces.cantact.CantactBus method), 73
send() (can.interfaces.etas.EtasBus method), 74
send() (can.interfaces.gs_usb.GsUsbBus method), 76
send() (can.interfaces.ixxat.canlib_vcinpl.IXXATBus

method), 81
send() (can.interfaces.ixxat.canlib_vcinpl2.IXXATBus

method), 82
send() (can.interfaces.ixxat.IXXATBus method), 79
send() (can.interfaces.kvaser.canlib.KvaserBus

method), 85
send() (can.interfaces.neousys.NeousysBus method), 87
send() (can.interfaces.nixnet.NiXNETcanBus method),

91
send() (can.interfaces.pcan.PcanBus method), 93
send() (can.interfaces.robotell.robotellBus method), 95
send() (can.interfaces.slcan.slcanBus method), 101
send() (can.interfaces.socketcan.SocketcanBus method),

109
send() (can.interfaces.socketcand.SocketCanDaemonBus

method), 113
send() (can.interfaces.systec.ucanbus.UcanBus

method), 116
send() (can.interfaces.usb2can.Usb2CanAbstractionLayer

method), 121
send() (can.interfaces.vector.VectorBus method), 122
send() (can.interfaces.virtual.VirtualBus method), 137

168 Index

python-can, Release 4.3.1

send_periodic() (can.BusABC method), 14
send_periodic() (can.interfaces.socketcan.SocketcanBus

method), 110
send_periodic() (can.interfaces.vector.VectorBus

method), 125
SerialBus (class in can.interfaces.serial.serial_can), 98
set_application_config()

(can.interfaces.vector.VectorBus static method),
123

set_auto_bus_management()
(can.interfaces.robotell.robotellBus method),
95

set_auto_retransmit()
(can.interfaces.robotell.robotellBus method),
95

set_bitrate() (can.interfaces.robotell.robotellBus
method), 95

set_bitrate() (can.interfaces.slcan.slcanBus method),
102

set_bitrate_reg() (can.interfaces.slcan.slcanBus
method), 102

set_device_number() (can.interfaces.pcan.PcanBus
method), 93

set_filters() (can.BusABC method), 15
set_filters() (can.interfaces.socketcan.SocketcanBus

method), 110
set_filters() (can.interfaces.vector.VectorBus

method), 124
set_hw_filter() (can.interfaces.robotell.robotellBus

method), 96
set_logging_level() (in module can.util), 68
set_serial_rate() (can.interfaces.robotell.robotellBus

method), 96
should_rollover() (can.io.BaseRotatingLogger

method), 38
should_rollover() (can.SizedRotatingLogger

method), 39
shutdown() (can.BusABC method), 15
shutdown() (can.interfaces.cantact.CantactBus

method), 73
shutdown() (can.interfaces.etas.EtasBus method), 74
shutdown() (can.interfaces.gs_usb.GsUsbBus method),

76
shutdown() (can.interfaces.ixxat.canlib_vcinpl.IXXATBus

method), 81
shutdown() (can.interfaces.ixxat.canlib_vcinpl2.IXXATBus

method), 83
shutdown() (can.interfaces.ixxat.IXXATBus method), 80
shutdown() (can.interfaces.kvaser.canlib.KvaserBus

method), 85
shutdown() (can.interfaces.neousys.NeousysBus

method), 87
shutdown() (can.interfaces.nixnet.NiXNETcanBus

method), 91

shutdown() (can.interfaces.pcan.PcanBus method), 94
shutdown() (can.interfaces.robotell.robotellBus

method), 96
shutdown() (can.interfaces.slcan.slcanBus method),

102
shutdown() (can.interfaces.socketcan.SocketcanBus

method), 111
shutdown() (can.interfaces.socketcand.SocketCanDaemonBus

method), 113
shutdown() (can.interfaces.systec.ucanbus.UcanBus

method), 117
shutdown() (can.interfaces.udp_multicast.UdpMulticastBus

method), 140
shutdown() (can.interfaces.vector.VectorBus method),

123
shutdown() (can.interfaces.virtual.VirtualBus method),

137
SizedRotatingLogger (class in can), 38
sjw (can.BitTiming property), 54
slcanBus (class in can.interfaces.slcan), 101
SocketcanBus (class in can.interfaces.socketcan), 108
SocketCanDaemonBus (class in

can.interfaces.socketcand), 112
SqliteReader (class in can), 30
SqliteWriter (class in can), 29
start() (can.broadcastmanager.ThreadBasedCyclicSendTask

method), 47
start() (can.interfaces.ixxat.canlib_vcinpl.CyclicSendTask

method), 81
start() (can.interfaces.ixxat.canlib_vcinpl2.CyclicSendTask

method), 83
start() (can.interfaces.socketcan.CyclicSendTask

method), 108
start() (can.RestartableCyclicTaskABC method), 46
state (can.BusABC property), 15
state (can.interfaces.etas.EtasBus property), 75
state (can.interfaces.ixxat.canlib_vcinpl.IXXATBus

property), 81
state (can.interfaces.ixxat.IXXATBus property), 80
state (can.interfaces.pcan.PcanBus property), 94
state (can.interfaces.socketcan.SocketcanBus property),

111
state (can.interfaces.systec.ucanbus.UcanBus prop-

erty), 117
status() (can.interfaces.pcan.PcanBus method), 94
status_is_ok() (can.interfaces.pcan.PcanBus

method), 94
status_string() (can.interfaces.pcan.PcanBus

method), 94
std_data (can.interfaces.kvaser.structures.BusStatistics

property), 86
std_remote (can.interfaces.kvaser.structures.BusStatistics

property), 86
stop() (can.ASCWriter method), 32

Index 169

python-can, Release 4.3.1

stop() (can.AsyncBufferedReader method), 25
stop() (can.BLFWriter method), 34
stop() (can.broadcastmanager.CyclicTask method), 45
stop() (can.broadcastmanager.ThreadBasedCyclicSendTask

method), 47
stop() (can.BufferedReader method), 24
stop() (can.interfaces.ixxat.canlib_vcinpl.CyclicSendTask

method), 81
stop() (can.interfaces.ixxat.canlib_vcinpl2.CyclicSendTask

method), 83
stop() (can.interfaces.socketcan.CyclicSendTask

method), 108
stop() (can.io.BaseRotatingLogger method), 38
stop() (can.io.generic.BaseIOHandler method), 63
stop() (can.Listener method), 23
stop() (can.MF4Reader method), 36
stop() (can.MF4Writer method), 35
stop() (can.Notifier method), 22
stop() (can.SqliteReader method), 31
stop() (can.SqliteWriter method), 30
stop_all_periodic_tasks() (can.BusABC method),

15
stop_all_periodic_tasks()

(can.interfaces.socketcan.SocketcanBus
method), 111

stop_all_periodic_tasks()
(can.interfaces.vector.VectorBus method),
125

T
TextIOMessageReader (class in can.io.generic), 65
TextIOMessageWriter (class in can.io.generic), 64
ThreadBasedCyclicSendTask (class in

can.broadcastmanager), 46
ThreadSafeBus (class in can), 16
time_perfcounter_correlation() (in module

can.util), 68
timestamp (can.Message attribute), 17
tq (can.BitTiming property), 54
TRCReader (class in can), 36
TRCWriter (class in can), 36
tseg1 (can.BitTiming property), 54
tseg2 (can.BitTiming property), 54

U
UcanBus (class in can.interfaces.systec.ucanbus), 116
UdpMulticastBus (class in

can.interfaces.udp_multicast), 138
Usb2CanAbstractionLayer (class in

can.interfaces.usb2can), 120
Usb2canBus (class in can.interfaces.usb2can), 119

V
VectorBus (class in can.interfaces.vector), 121

VectorBusParams (class in
can.interfaces.vector.canlib), 126

VectorCanFdParams (class in
can.interfaces.vector.canlib), 127

VectorCanParams (class in
can.interfaces.vector.canlib), 127

VectorChannelConfig (class in can.interfaces.vector),
126

VectorError, 126
VectorInitializationError, 126
VectorOperationError, 126
VirtualBus (class in can.interfaces.virtual), 136

W
writer (can.io.BaseRotatingLogger property), 38
writer (can.SizedRotatingLogger property), 39

X
XL_BUS_ACTIVE_CAP_A429

(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_CAN
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_DAIO
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_ETHERNET
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_FLEXRAY
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_J1708
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_KLINE
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_LIN
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_ACTIVE_CAP_MOST
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_A429
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_CAN
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_DAIO
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

170 Index

python-can, Release 4.3.1

XL_BUS_COMPATIBLE_ETHERNET
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_FLEXRAY
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_J1708
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_KLINE
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_LIN
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_COMPATIBLE_MOST
(can.interfaces.vector.xldefine.XL_BusCapabilities
attribute), 130

XL_BUS_PARAMS_CANOPMODE_CAN20
(can.interfaces.vector.xldefine.XL_CANFD_BusParams_CanOpMode
attribute), 131

XL_BUS_PARAMS_CANOPMODE_CANFD
(can.interfaces.vector.xldefine.XL_CANFD_BusParams_CanOpMode
attribute), 131

XL_BUS_PARAMS_CANOPMODE_CANFD_NO_ISO
(can.interfaces.vector.xldefine.XL_CANFD_BusParams_CanOpMode
attribute), 131

XL_BUS_TYPE_A429 (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_AFDX (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_CAN (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_DAIO (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_ETHERNET
(can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_FLEXRAY
(can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_J1708 (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_KLINE (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_LIN (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_MOST (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BUS_TYPE_NONE (can.interfaces.vector.xldefine.XL_BusTypes
attribute), 131

XL_BusCapabilities (class in
can.interfaces.vector.xldefine), 130

XL_BusTypes (class in can.interfaces.vector.xldefine),

130
XL_CANFD_BusParams_CanOpMode (class in

can.interfaces.vector.xldefine), 131
XL_CHANNEL_FLAG_CANFD_BOSCH_SUPPORT

(can.interfaces.vector.xldefine.XL_ChannelCapabilities
attribute), 130

XL_CHANNEL_FLAG_CANFD_ISO_SUPPORT
(can.interfaces.vector.xldefine.XL_ChannelCapabilities
attribute), 130

XL_CHANNEL_FLAG_CMACTLICENSE_SUPPORT
(can.interfaces.vector.xldefine.XL_ChannelCapabilities
attribute), 130

XL_CHANNEL_FLAG_NO_HWSYNC_SUPPORT
(can.interfaces.vector.xldefine.XL_ChannelCapabilities
attribute), 130

XL_CHANNEL_FLAG_SPDIF_CAPABLE
(can.interfaces.vector.xldefine.XL_ChannelCapabilities
attribute), 130

XL_CHANNEL_FLAG_TIME_SYNC_RUNNING
(can.interfaces.vector.xldefine.XL_ChannelCapabilities
attribute), 130

XL_ChannelCapabilities (class in
can.interfaces.vector.xldefine), 130

XL_ERR_BAD_EXE_FORMAT
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_CANNOT_OPEN_DRIVER
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_CHAN_IS_ONLINE
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_CMD_HANDLING
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_CMD_TIMEOUT (can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_CONNECTION_BROKEN
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_CONNECTION_CLOSED
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_CONNECTION_FAILED
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_DLL_NOT_FOUND
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_EDL_NOT_SET (can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_EDL_RTR (can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_ERROR_CRC (can.interfaces.vector.xldefine.XL_Status

Index 171

python-can, Release 4.3.1

attribute), 132
XL_ERR_HW_NOT_PRESENT

(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_HW_NOT_READY
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INIT_ACCESS_MISSING
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_INSUFFICIENT_BUFFER
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INTERNAL_ERROR
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_ACCESS
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_ADDRESS
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_CANID
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_INVALID_CHAN_INDEX
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_CHANNEL_MASK
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_INVALID_DLC (can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_INVALID_FDFLAG_MODE20
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_INVALID_HANDLE
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_INVALID_LEVEL
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_PORT
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_PORT_ACCESS_TYPE
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_RESERVED_FLD
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_SIZE
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_STREAM_NAME
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_INVALID_TAG (can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_INVALID_USER_BUFFER
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_NO_DATA_DETECTED
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_NO_LICENSE (can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_NO_RESOURCES
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_NO_SYSTEM_RESOURCES
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_NOT_FOUND (can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_NOT_IMPLEMENTED
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_NOT_SUPPORTED
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_NOTIFY_ALREADY_ACTIVE
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_PORT_IS_OFFLINE
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_QUEUE_IS_EMPTY
(can.interfaces.vector.xldefine.XL_Status
attribute), 131

XL_ERR_QUEUE_IS_FULL
(can.interfaces.vector.xldefine.XL_Status
attribute), 131

XL_ERR_QUEUE_OVERRUN
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_REQ_NOT_ACCEP
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_RESERVED_NOT_ZERO
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_STREAM_NOT_CONNECTED
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_STREAM_NOT_FOUND
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

172 Index

python-can, Release 4.3.1

XL_ERR_TWICE_REGISTER
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_TX_NOT_POSSIBLE
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_UNEXP_NET_ERR
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_UNKNOWN_FLAG
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_WRONG_BUS_TYPE
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_WRONG_CHIP_TYPE
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_WRONG_COMMAND
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERR_WRONG_PARAMETER
(can.interfaces.vector.xldefine.XL_Status
attribute), 132

XL_ERR_WRONG_VERSION
(can.interfaces.vector.xldefine.XL_Status
attribute), 133

XL_ERROR (can.interfaces.vector.xldefine.XL_Status at-
tribute), 133

XL_HardwareType (class in
can.interfaces.vector.xldefine), 127

XL_HWTYPE_CANAC2PCI
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANBOARDXL
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANBOARDXL_PXI
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANCARDX (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANCARDXL
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANCARDXLE
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANCARDY (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANCASEXL
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CANCASEXL_LOG_OBSOLETE

(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_CSMCAN (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_IPCL8800 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_IPCLIENT (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_IPSERVER (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_IPSRV8800
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_NONE (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 127

XL_HWTYPE_VGNSS (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VH6501 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VIRTUAL (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 127

XL_HWTYPE_VN0601 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN1530 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN1531 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN1610 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN1611 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN1630 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN1630_LOG
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN1640 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN2600 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN2610 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN2640 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN3300 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN3600 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN4610 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN5240 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN5430 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

Index 173

python-can, Release 4.3.1

XL_HWTYPE_VN5601 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN5610 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN5610A (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN5611 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN5612 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN5620 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN5640 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN5650 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN7570 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN7572 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN7600 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN7610 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN7640 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN8800 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VN8900 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN8950 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN8970 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 128

XL_HWTYPE_VN8972 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VT6104A (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VT6204 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VT6306 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VTSSERVICE
(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VX0312 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VX1121 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VX1131 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VX1135 (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_HWTYPE_VX1161A (can.interfaces.vector.xldefine.XL_HardwareType

attribute), 129
XL_HWTYPE_VX1161B (can.interfaces.vector.xldefine.XL_HardwareType

attribute), 129
XL_HWTYPE_VXLAPINIC

(can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_MAX_HWTYPE (can.interfaces.vector.xldefine.XL_HardwareType
attribute), 129

XL_OUTPUT_MODE_NORMAL
(can.interfaces.vector.xldefine.XL_OutputMode
attribute), 131

XL_OUTPUT_MODE_SILENT
(can.interfaces.vector.xldefine.XL_OutputMode
attribute), 131

XL_OUTPUT_MODE_SJA_1000_SILENT
(can.interfaces.vector.xldefine.XL_OutputMode
attribute), 131

XL_OUTPUT_MODE_TX_OFF
(can.interfaces.vector.xldefine.XL_OutputMode
attribute), 131

XL_OutputMode (class in can.interfaces.vector.xldefine),
131

XL_PENDING (can.interfaces.vector.xldefine.XL_Status
attribute), 131

XL_Status (class in can.interfaces.vector.xldefine), 131
XL_SUCCESS (can.interfaces.vector.xldefine.XL_Status

attribute), 131

174 Index

	Installation
	GNU/Linux dependencies
	Windows dependencies
	Kvaser
	PCAN
	IXXAT
	NI-CAN
	neoVI
	Vector
	CANtact
	CanViewer

	Installing python-can in development mode

	Configuration
	In Code
	Configuration File
	Environment Variables
	Interface Names

	Library API
	Bus
	Transmitting
	Receiving
	Filtering
	Bus API
	Thread safe bus

	Message
	Notifier and Listeners
	Notifier
	Listener
	BufferedReader
	RedirectReader

	File IO
	Reading and Writing Files
	Printer
	CSVWriter
	SqliteWriter
	Database table format

	ASC (.asc Logging format)
	Log (.log can-utils Logging format)
	BLF (Binary Logging Format)
	MF4 (Measurement Data Format v4)
	TRC
	Rotating Loggers
	Replaying Files

	Asyncio support
	Example

	Broadcast Manager
	Message Sending Tasks

	Error Handling
	Bit Timing Configuration
	Utilities
	Internal API
	BusABC
	Extending the BusABC class
	Bus Internals

	About the IO module
	Adding support for new file formats
	IO Utilities

	Other Utilities

	Hardware Interfaces
	CANalyst-II
	Supported platform
	Limitations
	Multiple Channels

	Backend Driver
	Bus

	CANtact CAN Interface
	ETAS
	Installation
	Configuration
	Bus

	Geschwister Schneider and candleLight
	Supported devices
	Supported platform
	Supplementary Info
	Bus

	isCAN
	Bus

	IXXAT Virtual Communication Interface
	Configuration
	Filtering
	List available devices
	Bus
	Implementation based on vcinpl.dll
	Implementation based on vcinpl2.dll

	Internals

	Kvaser’s CANLIB
	Bus
	Internals
	Message filtering
	Custom methods

	Neousys CAN Interface
	Intrepid Control Systems neoVI
	Installation
	Configuration
	Bus

	National Instruments NI-CAN
	Bus

	National Instruments NI-XNET
	Bus

	PCAN Basic API
	Configuration
	Linux installation
	Bus

	Robotell CAN-USB interface
	Bus

	Seeed Studio USB-CAN Analyzer
	Installation
	Interface
	Configuration

	CAN over Serial
	Bus
	Internals
	Serial frame format
	Examples of serial frames

	CAN over Serial / SLCAN
	Supported devices
	Bus
	Internals

	SocketCAN
	Socketcan Quickstart
	The virtual CAN driver (vcan)
	Real Device
	CAN over Serial / SLCAN
	PCAN
	Intrepid
	Send Test Message
	CAN Errors

	List network interfaces
	Display CAN statistics
	Network Interface Removal

	Wireshark
	Reading and Timeouts
	Filtering
	Broadcast Manager
	Buffer Sizes
	Bus

	socketcand Interface
	Bus
	Socketcand Quickstart
	Install CAN Interface for a MCP2515 based interface on a Raspberry Pi
	Enable socketcan for can0
	Build socketcand from source
	Install socketcand
	Run socketcand

	SYSTEC interface
	Installation
	Supported devices
	Configuration
	Bus
	Internals
	Message filtering
	Periodic tasks

	USB2CAN Interface
	Installation
	Internals
	Interface Layout

	Interface Specific Items
	Bus
	Exceptions
	Miscellaneous

	Vector
	Configuration
	VectorBus
	Exceptions
	Miscellaneous

	Virtual Interfaces
	Virtual
	Example
	Bus Class Documentation

	Multicast IP Interface
	Supported Platforms
	Example
	Bus Class Documentation

	Comparison
	Common Limitations

	Plugin Interface
	Example Interface Plugins

	Other CAN bus tools
	CAN Message protocols (implemented in Python)
	CAN Frame Parsing tools etc. (implemented in Python)
	Other CAN related tools, programs etc.

	Scripts
	can.logger
	can.player
	can.viewer
	Command line arguments

	can.logconvert

	Developer’s Overview
	Contributing
	Pre-releases
	Building & Installing
	Creating a new interface/backend
	Code Structure
	Creating a new Release

	History
	Background
	Acknowledgements
	Support for CAN within Python

	Known Bugs
	Python Module Index
	Index

